IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Retrospective Theses and Dissertations . .
Dissertations

Stability analysis of fixed-point digital filters using a
constructive algorithm

Kelvin Todd Erickson

Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
b Part of the Electrical and Flectronics Commons

Recommended Citation

Erickson, Kelvin Todd, "Stability analysis of fixed-point digital filters using a constructive algorithm " (1983). Retrospective Theses and
Dissertations. 8469.
https://lib.dr.iastate.edu/rtd /8469

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com



http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8469&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8469&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F8469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/8469?utm_source=lib.dr.iastate.edu%2Frtd%2F8469&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1.

The sign or “target” for pages apparently lacking from the document
photographed is “Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

. When an image on the film is obliterated with a round black mark, it is an

indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image. of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

- When a map, drawing or chart, etc., is part of the material being photographed,

a definite method of ‘“sectioning” the material has been followed. It is
customary to begin filming at the upper left hand corner of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

. For illustrations that cannot be satisfactorily reproduced by xerographic

means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. Thaese prints are available upon request from the
Dissertations Customer Services Department.

. Some pages in any document may have indistinct print. In all cases the best

available copy has been filmed.

Universi
Iml\\l/\eggﬁlns

300 N. Zeeb Road
Ann Arbor, M! 48106

www.manaraa.com



www.manharaa.com

o AJLb



8407068
Erickson, Kelvin Todd

STABILITY ANALYSIS OF FIXED-POINT DIGITAL FILTERS USING A
CONSTRUCTIVE ALGORITHM

lowa State University PH.D. 1983

University
Microfilms
International aww. zesb Rosd, Ann Arbor, Mi4s10s

www.manharaa.com



www.manaraa.com




Stability analysis of fixed-point digital filters

using a constructive algorithm

by

Kelvin Todd Erickson

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Department: Electrical Engineering
Major: Electrical Engineering (Control Systems)

Approved:
Members of the Committee

Signature was redacted for privacy. Signature was redacted for privacy.

In Charge 9} Major Work

Signature was redacted for privacy.

Fér thf Major Department

Signature was redacted for privacy.

For Mhe Fréffuate College

Iowa State University
Anes, Iowa

1983

www.manaraa.com



ii

TABLE OF CONTENTS

I. INTRODUCTION

II. PRELIMINARY MATERIAL

A,

B.

C.

D.

Notation

Stability of Systems Described by
Difference Equations

Constructive Stability Algorithm

Extreme Matrices of a Convex Set of Matrices

III. APPLICATION OF THE CONSTRUCTIVE ALGORITHM TO THE
STABILITY ANALYSIS OF DIGITAL FILTERS

A.

B.

C.

Nonlinearities in Digital Filters

General Digital Filter

Specific Digital Filters

1.

2,

3.

Direct form digital filter
a. One quantizer

b. Two quantizers

Coupled form digital filter
a. Two quantizers

b. Four quantizers

Wave digital filters

a. Specific wave digital filter
congidered

b. Two quantizers

c. Three quantizers

Page

14

19
19
25
27
28
29
33
35
37
41
43

44
51
55

www.manaraa.com



1v.

iii

4, Lattice digital filters
a. Two quantizers

b. Three quantizers

COMPARISON OF STABILITY RESULTS BY THE
CONSTRUCTIVE ALGORITHM WITH EXISTING STABILITY RESULTS

A. Direct Form Digital Filter
l. One quantizer
a. Truncation quantizer
b. Roundoff quantizer
2. Two quantizers
B. Coupled Form Digital Filter
l. Two quantizers
2. Four quantizers
C. Wave Digital Filter
1. Two quantizers
a. Truncation quantizers
b. Roundoff quantizers
2, Three quantizers
D. Lattice Digital Filter
1. Two quantizers
a. Truncation quantizers
b. Roundoff quantizers

2. Three quantizers

Page
58
62
63

67
67
68
68
76
80
96
96
101
110
110
110
113
114
119
119
119
120
124

www.manaraa.com



v.
Vi.
VII.
VIiII.

IX.

X.

iv

CONCLUSION

REFERENCES

ACKNOWLEDGEMENTS

VITA

APPENDIX A: DESCRIPTION OF COMPUTER PROGRAMS

A. Constructive Algorithm Subroutine

B. Program to Find the Region of Stability for a
Digital Filter

C. Program to Find the Boundary of a Region

APPENDIX B: LISTING OF COMPUTER PROGRAMS

A, Constructive Algorithm Subroutine: BRAYT

B. Program to Find the Region of Stability for a
Digital Filter: BGRID

C. Program to Fird the Boundary of a Region: BORDR

D. Subroutines that are Unique to Each Digital
Filter Structure

1.
2.
3.
4.
5.
6.
7.

Direct form with one quantizer
Direct form with two quantizers
Coupled form with two quantizers
Coupled form with four quantizers
Wave filter with two quantizers
Wave filter with three quantizers
Lattice filter with two quantizers

Lattice filter with three quantizers
and no overflow

Page
136
139
143
144
145
146

149
156
165
165

205
218

www.manaraa.com



Page

9., Lattice filter with three quantizers
and overflow 320

www.manharaa.com




Figure
Figure
Figure
Figure

Figure

Figure
Fiéure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure

2.1,

3.1.
3.2,
3.3.
3.4,

3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12,

3.13.

3.14,
3.15,
3.16.
3.17.
3.18.

4.1.

vi

LIST OF FIGURES
A general sector [k, k2]
Fixed-point quantization characteristics
Overflow characteristics
Linear second order direct form digital filter
Region in the parameter plane where a linear
second order direct form filter is globally
asymptotically stable
Direct form digital filter with two quantizers
Direct form digital filter with one quantizer
Linear second order coupled form digital filter
Coupled form digital filter with four quantizers
Coupled form digital filter with two quantizers
General full-synchronic wave digital filter
General second order LC lowpass analog filter

Synthesis of second order LC lowpass wave
digital filter

Linear wave digital filter structure for
specific example

Wave digital filter with two quantizers

Wave digital filter with three quantizers
General lattice digital filter structure
Lattice digital filter with two quantizers
Lattice digital filter witﬁ three quantizers
Region where a direct form filter with one

truncation quantizer is free of limit cycles
by Theorem 4.1

Page

21
23

30

30
31
31
36
38
39
45

45

46

47
52
53
59
60

61

70

www.manaraa.com



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

4'2.

4.3,

4.4.

4o5.

4.6.

4.7.

4.8,

4.9,

4,10,

4.11.

4.126

'4-130

vii

Region where a direct form filter with one two's
complement overflow nonlinearity is free of limit
cycles by Equation 4.6

Region where a direct form filter with one

truncation quantizer and saturation, zeroing or no

overflow is g.a.s. by the constructive algorithm

Region where a direct form filter with one
truncation quantizer and triangular overflow is
g.a.8. by the comstructive algorithm

Region where a direct form filter with one
truncation quantizer and two's complement
overflow is g.a.s. by the constructive algorithm

Nonlinear discrete system considered in
Theorem 4.2.

Region where a direct form filter with one
roundoff quantizer and no overflow is free of
limit cycles by Theorem 4.2

Region where a direct form filter with one
roundoff quantizer and saturation, zeroing or no
overflow is g.a.s. by the comstructive algorithm

Region where a direct form filter with omne
roundoff quantizer and triangular overflow is
g.a.8. by the constructive algorithm

Region where a direct form filter with one
roundoff quantizer and two's complement overflow
is g.a.s. by the constructive algorithm

A general discrete system with many non—
linearities.

‘Region where a direct form filter with two

truncation quantizers and no overflow is g.a.s.
by Theorem 4.3

Region where a direct form filter with two
roundoff quantizers and no overflow is
gea.8. by Theorem 4.3

Page

71

74

75

77

79

81

82

83

85

88

89

www.manaraa.com



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

4.l4.

4.15.

4.16.

4.17.

4.18,

4.19.

4.20.

4.21.

4.22.

4023.

424,

- viii

Region where a direct
truncation quantizers

form filter with two
and saturation,

zeroing or no overflow 1s g.a.s. by the
constructive algorithm

Region where a direct
truncation quantizers
overflow 18 ge.a.s. by
algorithm

Region where a direct
truncation quantizers
overflow 1s g.a.s. by

form filter with two
and triangular
the constructive

form filter with two
and two's complement
the constructive

algorithm

Region where a direct form filter with two
roundoff quantizers and saturation, zeroing
or no overflow is g.a.s. by the comstructive
algorithm

Region where a direct form filter with two
roundoff quantizers and triangular overflow 1is
g.a.8. by the constructive algorithm

Region where a direct form filter with two
roundoff quantizers and two's complement overflow
is g.a.s. by the constructive algorithm

Region where a coupled form filter with two or
four roundoff quantizers and any overflow is free
of 1limit cycles by [24]

Imbedded squares in state space of coupled form
filter

Région where a coupled form filter with four
truncation quantizers and no overflow is free
of limit cycles by Equation 4.21

Region where a coupled form filter with four
truncation quantizers and saturation, zeroing or
no overflow is g.a.s. by the constructive
algorithm

Region where a coupled form filter with four
truncation quantizers and triangular overflow
is g.a.s. by the constructive algorithm

Page

90

91

92

93

94

95

99

99

102

104

105

www.manaraa.com



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

4,25,

4.26.

4.27.

4.28.

4.29.

4.30.

4.31.

4.32,

4.33.

4,34,

4.35.

ix

Region where a coupled form filter with four
truncation quantizers and two's complement
overflow 1s g.a.s. by the conmstructive
algorithm

Region where a coupled form filter with four
roundoff quantizers and saturation, zeroing or
no overflow is g.a.s. by the comstructive
algorithm

Region where a coupled form filter with four
roundoff quantizers and triangular overflow is
g.a.s6. by the constructive algorithm

Region where a coupted form filter with four
roundoff quantizers and two's complement
overflow is ge.a.s. by the constructive algorithm

Region where the specific wave filter with two
roundoff quantizers and no overflow is ge.a.s. by
Theorem 4.3

Region where the specific wave filter with two
roundoff quantizers and saturation, zeroing or no
overflow is g.a.s. by the constructive algorithm

Region where the specific wave filter with two
roundoff quantizers and triangular overflow is
g.a.8. by the constructive algorithm

Region where the specific wave filter with two
roundoff quantizers and two's complement overflow
is g.a.s. by the constructive algorithm

Region where the lattice filter with two
roundoff quantizers and saturation, zeroing
or no overflow is g.a.s. by the constructive
algorithm

Region where the lattice filter with two
roundoff quantizers and triangular overflow
is g.a.s. by the constructive algorithm

Region where the lattice filter with two

‘roundoff quantizers and two's complement

overflow is g.a.s. by the constructive
algorithm

Page

106

107

108

109

115

116

117

118

121

122

123

www.manaraa.com



Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

4.36.

4.37.

4,38,

4.39,

4.40.

4.41,

4.42,

4.43.

4,44,

4.45,

9.1,

9.2.
9.3.

Region where the lattice filter with three
truncation quantizers and no overflow 1s g.a.s.
by Theorem 4.3

Region where the lattice filter with three
roundoff quantizers and no overflow is g.a.s.
by Theorem 4.3

Region where the lattice filter with three
truncation quantizers and no overflow 1is g.a.s.
by the constructive algorithm

Region where the lattice filter with three
truncation quantizers and saturation or zeroing
overflow i1s g.a.s. by the constructive algorithm

Region where the lattice filter with three
truncation quantizers and triangular overflow
is g.a.s. by the constructive algorithm

Region where the lattice filter with three
truncation quantizers and two's complement
overflow is g.a.s. by the constructive algorithm

Region where the lattice filter with three
roundoff quantizers and no overflow 1is g.a.s.
by the constructive algorithm

Region where the lattice filter with three
roundoff quantizers and saturation or zeroing
overflow is g.a.s. by the constructive algorithm

Region where the lattice filter with three
roundoff quantizers and triangular overflow is
g+8+.8. by the constructive algorithm

Region where the lattice filter with three
roundoff quantizers and two's complement
overflow is g.a.s. by the constructive algorithm
Example output of BGRID: default region

Example output of BGRID: rectangular.region

Triangular region used to illustrate the
operation of BORDR

Page

126

127

128

129

130

131

132

133

134

135

153
154

158

www.manaraa.com



xi

Page
Figure 9.4. Example output of BORDR ' 161
Figure 9.5. Boundafy drawn from example output of BORDR 163

ol Lal ZJI—EL'

www.manharaa.com




I. INTRODUCTION

Due to recent advances in semiconductor technology, there has been
increasing interest in the digital processing of signals. The basic
element of almost every digital processing system is a digital filtgr.
These digital filters are often implemented using a microprocessor with
fixed-point arithmetic. However, the implemented digital filter will
not behave exactly like the desired filter because the microprocessor
introduces quantization and overflow nonlinearities due to the fixed-
point arithmetic. In the recursive part of the filter, these
nonlinearities may cause the filter to exhibit limit cycle oscillations.
If limit cycles do exist for a given digital filter, then the output of
the filter may not return to zero when the input is zero. Since these
limit cycles are undesirable, the digital filter designer needs guldance
to determine for a particular application which filters do not exhibit
1imit cycles. This dissertation addresses this problem by giving the
region of allowable parameters that insures the absence of these limit
cycles for a given digital filter structure. These parameters are the
digital multiplier gains in the filter structure. Since many digital
filters are formed by combining second order filters, we will restrict
our attention to second order filters. Also, since this dissertation
only treats the existance or absence of limit cycles, we are not

concerned about their amplitude if they do exist.
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In recent papers, Brayton and Tong [l], [2] established some
elegant results which are the basis of a comstructive approach in the
gtability analysis of dynamical systems. In this dissertation, we apply
this constructive algorithm to the stability analysis of digital
filters. Specifically, we find the regions in the parameter plane where
a given second order fixed-point digital filter is globally
asymptotically stable, using the constructive algorithm of Bray;on and
Tong. In these regions, the absence of limit cycles is insured.

In Chapter II, we present the necessary background material
concerning the constructive stability algorithm. In Chapter III, we
show how the constructive algorithm is applied to the stablity analysis
of four second order fixed-point digital filters: direct form, coupled
form, wave filters and lattice filters. Chapter IV presents the
stability results obtained by the constructive algorithm and compares
them with existing stability results. In Chapter V, we present our
conclusions and suggestions for further work. Descriptions and listings
of the computer programs used in our investigation are contained in the

appendices.
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II. PRELIMINARY MATERIAL

This chapter presents the necessary background material concerning
the constructive stability algorithm that we use in the stability
analysis of digital filters. In Section A, the notation that will be
used throughout this dissertation will be presented. In Section B,
aspects of stability analysis of gemeral systems described by difference
equations will be discussed. Specifically, only the Lyapunov stability
results that are required in subsequent sections will be presented. 1In
Section C, significant results of the constructive stability algorithm
due to Brayton and Tong [1], [2] will be presented. In Section D, we
introduce the concept of the extreme matrices of a convex set of
matrices. This concept is used in the next chapter where the

constructive algorithm is applied to fixed-point digital filters.
A. Notation

Let U and V be arbitrary sets. If u is an element of U, we write
ueU., If U is a subset of V, we write U c V. Let U x V denote the
cartesian product of U and V. The boundary of U is denoted by 3U. If
W is a convex polyhedral region, then the elements of the set E(W)
denote its extreme vertices and x[W] = W u 3W denotes its convex hull.

Let R denote the real line, let ﬁ+ = [0,») and let R" denote the
set of real-valued n-tuples. The symbol || denotes a vector norm on
R®. If £ is a function or mapping of a set X into a set Y, we write

£:X+Y. Also, B(r) = {x e R%:|x| < r}.
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Matrices are usually assumed to be real and we denote them by upper
case letfers. If A= [aij] is an arbitrary n x n matrix, then
AT denotes the transpose of A. Also, WAl is used to denote the matrix
norm of A induced by some vector norm. A set of matrices is denoted by
an underlined uppérlcase letter, e.g., A. The set of extreme matrices
of a convex set of matrices A is: denoted by E(A).

A continuous funétion ¢'--R+ > R* is said to belong to class K,
i.e.y, ¢ € K, 1f $(0) = 0 and if ¢ is étrictly increasing on rY. 1f

$ =R + R, 1f ¢ € K, and 1f lim_, , ¢(r) = =, then ¢ is said to

> ®
belong to class KR.

Let T € Ié{t°+ k}, k = 0,1,2, ee¢, 1In a digital filter structure
block diagram, z-1 represents a unit delay.

The function f(*) is said to belong to the sector [kl’ k2], if
i) £(0) = 0 and ii) kl < féﬁl < kz, x# 0, for all xe R. A general
sector [kl, k2] is represented by the hatched region of Figure 2.l.

Finally, when we write a complex number, let J = /-1.
B. Stability of Systems Described by Difference Equations

In the present section, we consider systems described by ordinary

autonomous difference equations of the form
x(t+l) = glx(7)] (2.1)

where x € RP, g= R™ R" and T € I. We denote unique solutions of

(2.1) by x(t; X To), where X = x(to; X » ro). Since we are dealing
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Figure 2.1. A general sector [k;, k,]
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with autonomous equations, we shall assume without loss of generality

that = 0. Any point x, € R® for which it is true that X, = g(xe) is

called an equilibrium point of (2.1). We will henceforth assume that
x = 0 is an isolated equilibriuﬁ of (2.1), i.e., that there exists a
constant r > 0 such that B(r) contains no equilibrium points of (2.1)
other than the origin. Thus, we have in particular g(0) = 0.

We will call any nontrivial periodic solution of (2.1) a limit
cycle. It is customary in the study of digital filters to include
nonzero equilibrium points as limit cycles. Unless otherwise stated, we
will follow this practice.

Since (2.1) is a system of nonlinear equations, it is in general
not possible to generate a closed-form solution for (2.1). For this
reason, the qualitative analysis of the equilibrium x = 0 of (2.1) is of
great importance, especially the stability analysis of x = 0 in the
sense of Lyapunov. The concepts of Lyapunov stability that we shall
require are given next.

Definition 2.1 The equilibrium x = 0 of (2.1) is said to be stable

(in the sense of Lyapunov) 1f for every € > 0, there exists a
§(e) > 0 such that |x(t; x , 0)| < € for all T > O whenever |x | < §.

Definition 2.2 The equilibrium x = 0 of (2.1) is said to be

asymptotically stable (in the sense of Lyapunov) if (i) it is stable

and (ii) there exists a number n > 0 having the property that

lim, x(T3 X 0) = 0 whenever |xo| < n. If in particular, condition

500

(11) is true for all x € R, then the equilibrium x = 0 of (2.1) is
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said to be globally asymptotically stable (g. a. s.) or asymptotically

stable in the large.
Definition 2.3 The equilibrium x = 0 of (2.1) is unstable if it is

not stable.

The principal Lyapunov results which yield conditions for
stability, asymptotic stability or inmstability in the sense of
definitions 2.1, 2.2 and 2.3 involve the existence of functionms,

v ¢ R% R. Such functions have certain definiteness properties which we
enumerate next.

Definition 2.4 A function v : R°> R is said to be positive

definite if there exists a function y € K such that v(0) = 0 and
v(x) > ¥(|x|) for all x € B(r) for some r > 0.

Definition 2.5 A function v : R™ R is said to be negative

definite if -v is positive definite.

Definition 2.6 A function v : R®> R 1s said to be radially

unbounded if there exists a function ¢ € KR such that v(0) = O and
v(x) > ¥(|x|) for all x € R".
The first forward difference of a function v : R™ R along the

solutions of equation (2.1) is given by

DV y. 1y (X(D] & vix(e4D)] = vix()]
= v[g(x(1))] - vIx(1)]

(2.2)

for all T » 0. Henceforth, we shall use the notation

Dv(z.l)(x) = v(g(x)) - v(x). (2.3)

www.manaraa.com



Furthermore, we shall assume that v is continuous and that it satisfies
a Lipschitz condition with respect to x.

We are now in a position to state three Lyapunov theorems which
will be of interest to us.

Theorem 2.1 The equilibrium x = 0 of (2.1) is stable if there
exists a function v : R™ R such that (1) v is positive definite and
(11) Dv(z.l)(x) < 0 for all x € B(r) for some r > 0.

Theorem 2.2 The equilibrium x = 0 of (2.1) is asymptotically

stable if there existe‘a function v : R™ R such that (1) v is positive
definite and (ii) Dv(2 1)(x) is negative definite.
Theorem 2.3 The equilibrium x = 0 of (2.1) is globally

asymptotically stable if there exists a function v : R™ R such that (1)

v 1s radially unbounded and (ii) Dv(z.l)(x) is negative definite for all
x € R,
Note that if it is possible to find a v function for (2.1) which
satisfies the conditions of Theorem 2.3, then
1.) System (2.1) has only one equilibrium;
2.) This equilibrium will be x = 0;

3.) No limit cycles will exist for system (2.1).
C. Constructive Stability Algorithm

In two papers [l] and [2], Brayton and Tong present an algorithm to
construct a Lyapunov function to establish the stability and global

asymptotic stability of the equilibrium x = 0 of dynamical systems
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described by ordinary differential equations and also by difference
equations. Their algorithm is applicable to systems having only omne
equilibrium point. The basic philosophy of their method is to determine
the stability of an appropriate set of matrices associated with the
'system in question. The stability and asymptotic stability of this set
of matrices is used to deduce the stability and asymptotic stability of
the equilibrium of the given system. (We will make precise definitions
of these terms later in this section.) To utilize this constructive

stgbility algorithm, we rewrite the given system equation,
x(k+l) = gix(k)] (2.4)
as
x(k+l) = M(x(k))x(k) (2.5)

where M(x(k)) 1s chosen so that M(x(k))x(k) = g[x(k)]. For every
x(k) € RP, M(x(k)) will be a real n x n matrix. If we let M denote the
set of all matrices, M, obtained by varying x(k) over all allowable

values, then we can rewrite (2.5) equivalently as
x(ktl) = M x(k) , M c M. (2.6)

In [1] and [2], it is shown that the equilibrium x = 0 of (2.4) is
stable (globally asymptotically stable) if the set of matrices M is
stable (asymptotically stable). (The precise definitioms of these two

terms are given in the next paragraphs.) A summary of the results of
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Brayton and Tong is presented next. Refer to [1] and [2] for further
details concerning these results. The results which follow are phrased
in terms of real matrices. The interested reader is referred to [1] for
details concerning the extension of these results to complex matrices.

We call a set A of n x n real matrices stable if for every
neighborhood of the origin U c Rn, there exists another neighborhood of
the origin V ¢ R" such that for every M € A', we have MV ¢ U. Here,

A' denotes the multiplicative semigroup generated by A and
MV = {ue R u=My, ve V}.

In [1], it is shown that the following statements (which
characterize the properties of a class of stable matrices) are
equivalent.

a) A 1is stable.

b) A' is bounded.

¢) There exists a bounded neighborhood of the origin W c R" such
that MW c W for every M € A. - Furthermore, W can be chosen
to be convex and balanced.

d) There exists a vector norm |°|W such that IMxlw < |x|w for
all M c A and for all x € R™.

Now, let « € R and let W ¢ R". Let oW = {ue R%: u=aw, We ul.

Since statements c) and‘d) above are related by
|x|w = inf{a: a > 0, x € aW} . (2.7)

it follows that lew'defines a Lyapunov function for A, i.e., it defines
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a function v with the property
v(Mx) € v(x), for all ¥ ¢ Aand x € R" (2.8)

Next, we call a set of matrices A asymptotically stable if there

exists a number p > 1 such that pA is stable. (The set pA is obtained
by mltiplying every member of A by p.) In [2], it is shown that the
following statem_ents. ‘(which characterize the properties of a class of
asymptotically stable matrices) are equivalent.

a) A is asymptotically stable.

b) There exists a convex, balanced, and polyhedral neighborhood
of the origin W and a positive number Yy < 1 such that for
each M € A, we have MW c YW. (Here
YW = {ue R u=yw we W)

c) A is stable and there exists a positive comstant K such that
for all M e A', |>.1(M)| <K <1, i=l,eee n, where

A, (M) denotes the th

eigenvalue of M.
Note that if A is stable, then YA is asymptotically stable for all
positive v < 1.

In [1] and [2], a constructive algorithm is given to determine

whether a set of m n x n real matrices A = {Ho, ooe, Mm—l} is stable by
starting with an initial polyhedral neighborhood of the origin Wo and by

defining a sequence of regions {Wk ﬂ} by

wk-&-le K Uni,wk , where k'=(k-1) mod m (2.9)
j=0
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and where k[*] denotes the convex hull of a set. Now, A is stable if

and only if

*
W = yW (2.10)

k=0 K

is bounded. Note that W* is also given by
Wk = K[UMWO, MeA'l. (2.11)

Since all extreme points z of Wk+1 are of the form z = Miu, where u is
an extreme point of Wk, we need only deal with the extreme points of Wk

in order to obtain
= oM u:
wkﬂ K[Mk,u. ue€ E(Wk)] (2.12)

where E(Wk) denotes the set of extreme points of Wk. Clearly, the new
extreme points E(W, ) are images of E(W ). If |A(Mk,)| <1 for

Mk' € A, then there exists an integer Jk' such that

® J
U s | = x| M (2.13)
j-o j-o

since Wk is a bounded neighborhood of the origin. Notice that Jk' can

be recognized since it is the smallest Jk to satisfy

i Tyt
Mo ¥ Uui,wk <K U Hi,wk . (2.14)
j-o =()

Thus, Wk+1 will be formed in a finite number of steps, since Wk is

expressed as the convex hull of a finite set of p&ints.
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In practice, Wo above 1s usually chosen as simple as possible,

i.e., it is chosen as the region defined by

EW)) = {w, e R®: x

A 441> xij-O, J#4, i=l,ese,n} (2.15)

where w, = (xil,xiz,"-,xm) e R",

Note that Wo determined in this way is symmetric, and of all
symmetric polyhedral regions, it possesses a minimal number of extreme
points, namely 2n.

We call a set of matrices A unstable if A is not stable. In [1],
the following instability criterion is established: A is unstable if
there exists a k such that awo n Wk = §, where ¢ denotes the null
set. For additional (and improved) inmstability criteria, refer to [2].

In [2] it 1s also shown that if a set A of matrices, with

E(A) finite, is asymptotically stable, then the constructive algorithm

given above will terminate "stable” in a finite number of steps. Thus,
a set A can be determined stable in a finite number of steps if A is
asymptotically stable. We have no way of knowing, by means of the
constructive algorithm alone, that A is asymptotically stable at the
termination of the algorithm. However, we can show that A 1is
asymptotically stable by choosing a p > 1 sufficiently small and then
showing that pA is stable by using the constructive algorithm.

Next, we observe that the set M given in Equation (2.6) consists in
general of infinitely many matrices. However, the following result,
established in [1], re(iuces the stability analysis of the equilibrium

x = 0 of (2.6) to a finite set of matrices: let A be a set of matrices
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in the linear space of n x n matrices and let E(A) be the set of extreme
matrices of A (the precise definition of an extreme matrix will be given
in the next section). Then, k(A) is stable if and only if E(A) is
stable. Thus, if E(A) happens to be finite, then the stability analysis
of A (and hence, of (2.6)) can be accomplished in a finite number of

stepB-
D. Extreme Matrices of a Convex Set of Matrices

In this section, we introduce the concepts of a convex set of
matrices, an extreme subset and an extreme matrix. We phrase our
definitions in terms of a linear vector space of real n x n matrices
over R, For general definitions of these concepts, see Dunford and
Schwartz [3].

Definition 2.7 Let (R" * “, R) denote the linear space of real

n x n matrices over R. A set A € R" X 45 convex if X, Ye A,
k € R, and 0 € k < 1, imply kX + (1-k)Y ¢ A,

Definition 2.8 Let A;, A, € A and k € R. A non-void subset B ¢ A

is said to be an extreme subset of A if a proper convex combination

kAl + (l-k)Az, 0<k<1, is in B only if Al’ A2 € B. An extreme

subset of A consisting of just ome matrix is called an extreme matrix of

A, The set of extreme matrices of A is denoted by E(A).
To apply these definitions to our problem, comsider the set of

2 x 2 matrices with one parameter varying,

A - ﬂ: . 2]} (2.16)
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where b, ¢ and d are constants and

where aland a, are constants. Al is a convex set of matrices by

Definition 2.7. The set of extreme matrices of,éi is
E)) = {8}, B},} (2.18)

where

al b “2 b
Bys *|e¢ al Biz2"|e a4l ° (2.19)

In order to demonstrate that B; and Bz are extreme matrices of.él, we
examine the convex combination of any two matrices in A;. Let A;,,

Aj5 € Ay be given by

a1 b a2 b
AL "le a A =le 4 (2.20)

where

a, €a < a

1712 (2.21)
“1 < a2 < a2 N
A convex combination of these two matrices 1s
ka, + (l-k)a2 b
kA + (l-k)A = O (2.22)
11 12 c d
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Clearly, kA,, + (l-k)A12 = for 0 < k < 1 only if

11 By

A, =A, = Bll' Hence, Bll is an extreme matrix by Definition 2.8.

11 12
Similarly, kA11 + (l-k)A12 = B12 for 0 < k < 1 only if A11= A12= 312.
Therefore, Bio is also an extreme matrix. The matrices B;, and By, are
the only extreme matrices since they are the only matrices in‘él that
satisfy Definition 2.8.

Now suppose we have a set of 2 x 2 matrices with two varying

parameters,

A, = {[2 3]} (2.23)

where b and d are constants and

a, €aca
l 2 (2.24)

Yy €c¢® Yy

where Gy Gy Yy and Y, are constants. 52 is a convex set of matrices

by Definition 2.7. The set of extreme matrices of 52 is

E(Ay) = {B)s Byys Byzs Byl (2.25)

where
» - 1
. °1 b 5 ; a2 b
21 Y dJ 22 Y, d
- (2.26)
5 al b 5 az
23 Yy d 24 Yy d
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To demonstrate that the extreme matrices of 52 are given by Equation

(2.26), we examine the convex combination of any two matrices in A,y

Let AZI’ A22 € é_z be defined by

a, b a, b
A1 " le, d A2 7|, af (2.27)

where

< <
o a a,

1 1
a, €a, €

12 2 (2.28)
Yp€e STy
Yp€ep< ¥y,

A convex combination of A21 and A22 is
kal + (l-k)a2 b

Khpy ¥ (1KMAgy = liee, + (1-kde, d| ° (2.29)

Clearly, kA21 + (l-k)A22 = 821 for 0 < k < 1 only if Ay = Agy = Byy. A

similar argument shows that Byy, B3 and By, are also extreme matrices

of 52. The matrices in Equation (2.26) are the only extreme matrices of

52 since they are the only matrices in 52 that satisfy Definition 2.8.
For a general second order digital filter, we will consider

matrices of the form

a b
A= [c 'd] (2.30)
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where the elements of A satisfy the inequalities

a, Cada

1 2

B, <b<B
1 2 (2.31)
Yy Secy,

61 <d< 62

where a, 81, A and 61, 1 =1, 2 are constants. Let A be the set of
all matrices obtained by varying a, b, ¢ and d over all allowable

values. The set of extreme matrices is obtained in a manner similar to

the preceding examples and is given by

a, B
E(é.) = [yi 61] y 1, 3, ky, 2 =1,2. (2.32)
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IITI. APPLICATION OF THE CONSTRUCTIVE ALGORITHM TO
THE STABILITY ANALYSIS OF DIGITAL FILTERS

In this chapter, we show how to apply the Brayton-Tong
constructive algorithm to the stability analysis of digital
filters. In Section A, the types of nonlinearities that occur in
fixed-point digital filters will be presented. In Section B, we
present the procedure used to determine the extreme matrices for a
general second order digital filter. Imn Section C, this procedure is
applied to four second order digital filter structures: direct form,
coupled form, wave filters, and lattice filters.

In Chapter IV, the stability results obtained by the
constructive algorithm for these four filter structures are compared

with existing stability results.
A. Nonlinearities in Digital Filters

In digital filters, the representation of signals must
necessarily have finite precision. The finite precision or
wordlength is a consequence of the encoding of the signals in a
particular format (e.g., fixed- or floating-point) and of the storage
of these signals in registers which have finite wardlength.
Multiplications and.addition; performed in the digital filter
generally lead to an increase in the wordlength required for the
result of the operation. If the number of operations performed on a

signal remains finite, as in a nonrecursive filter, the increasing

www.manaraa.com



20

wordlength can be handled by using larger registers for storing the
results of the arithmetic operations. However, in a recursive
digitai filter, a wordlength reduction is necessary to prevent the
wordlength of the signals from increasing indefinitely.

In this dissertation, wé assume that the digital filters use
fixed-point arithmetic. In fixed-point arithmetic, each number is
represented by a sign bit and a magnitude. Thus, the magnitude of
any number is represented by a string of binary digits of fixed
length B. When two B-bit numbers are multiplied, the result is a 2B-
bit number. A quantization nonlinearity is produced when the 2B-bit
number is reduced in wordlength to B bits. Quantization only affects
the least significant bits. Addition also poses a problem when the
sum of two numbers falls outside the representable range. An
overflow nonlinearity results when this number is modified so that it
falls back within the representable range. In general, the overflow
nonlinearity changes the most significant bits as.well as the least
significant bits of a fixed-point number. These two types of
nonlinearities are well described in the literature (see e.g., [4],
[5]) and therefore, will only be briefly discussed here.

Quantization can be performed by substituting the nearest
possible number that can be represented by the limited number of
bits. This type of nonlinear operation is called a roundoff
quantizer and its characteristic is shown in Figure 3.1(a). Another

possibility consists of discarding the least significant bits in the
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Figure 3.1. Fixed-point quantization characteristics
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number. If the signals are fepresented by sign and magnitude then we

have a magnitude truncation quantization characteristic as depicted

in Figure 3.1(b). If the signals are represented in a two's

complement format, the nonlinearity is a two's complement or value

truncation quantization as shown in Figure 3.1(c). In this

dissertation, value truncation is not considered. Thus, the term

truncation will always refer to magnitude truncation in this

dissertation.

If an overflow occurs, a number of different actions may be
taken. If the number that caused the overflow is replaced by a
number having the same sign, but with a magnitude corresponding to

the overflow level, a saturation overflow characteristic shown in

Figure 3.2(a) is obtained. Zeroing overflow substitutes the number

zero in case of an overfiow (see Figure 3.2(b)). In two's complement
arithmetic, the most significant bits that caused the overflow are
discarded. In this case, overflows in intermediate results do not
cause errors, as long as the final result does not have overflow.

This two's complement overflow characteristic is illustrated in

Figure 3.2(c). Another way of dealing with overflow is the

triangular overflow characteristic (see Figure 3.2(d)) as proposed by
Eckhardt and Winkelnkemper [6]. |

It is possible to have different wordlengths for the various
signals in the filter, resulting in different quantization stepsizes

and/or different overflow levels. We will assume throughout this
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Figure 3.2. Overflow characteristics
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dissertation that all quantizers in a filter have the same
quantization stepsize, q, and are the same type, e.g., roundoff or
truncation., Similarly, we will assume that all overflow
nonlinearities in a filter have the same overflow level, p, and are
the same type.

The above nonlinearities will be viewed in this dissertation as

belonging to a sector [km, kM], where

(o)
km < ]

< kM for all o € R, (3.1)

The function f£(*) represents the nonlinearity and the only
restrictions on k; and ky are - < km < kM =,
Under the above assumptions, we view the quantization

nonlinearities as belonging to the sector [O, kq] where

1 truncation

k = (3.2)
1 2 roundoff .

Henceforth, k,Cl will represent the upper slope of the sector that
contains the quantization nonlinearity. The overflow nonlinearities
are represented as belonging to the sector [ko, 1] where

0 saturation or zerolng

1
ko == 7 triangular (3.3)

-1 two's complement .
Henceforth, k, will represent the lower slope of the sector that
contains the overflow nonlinearity.
When these two nonlinear operations are combined, i.e.,

quantization and overflow functions are executed simultaneously, then
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the nonlinear operation is represented as. belonging to the sector
[ko, kq]. The constant ko is determined by the type of overflow
being performed and the comstant kq is determined by the type of
quantization operation.

Our representation of a fixed-point digital filter is not an
exact description of an actual realization of a digital filter. Due
to the finite number of values that a signal in a digital filter can
attain, actual realizations of digital filters are finite state
machines. The digital filters which we analyze are still
idealizations in the sense that they are not finite state machines.
This difficulty is not a serious problem since we assume that a

filter operates in its designated range.
B. General Digital Filter

To apply the constructive stability method, we represent a

digital filter as a system of difference equations,
x(k+1) = glx(k)] (3.4)

where k = 0, 1, 2, ¢¢+ , Following the procedure outlined in the

previous chapter, we rewrite the given system equations as
x(k+1) = M(x(k))x(k) (3.5)

where M(x(k)) is chosen so that M(x(k))x(k) = g[x(k)]. Since we
consider only second order systems in this dissertation, the matrix M

may be rewritten as
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a(x(k)) b(x(k))]
. (3.6)

M(x(k)) = [
c(x(k)) d(x(k))

We assume that the elements of M satisfy the inequalities

a, < a(x(k)) < @,

1

B, € b(x(k)) < B, -
Y, < e(x()) < v, '

61 < d(x(k)) < 52

where & Bi, Yy and 61, i =1, 2 are constants.
Let M be the set of all matrices obtained by varying x(k) in
M(x(k)) over all allowable values. The extreme matrices of set M are

obtained as

[ai Bj]
EQD =<1y 5 b Dodsked = 1,2 o (3.8)
k 2

By the results of the previous chapter, the set M is stable
(asymptotically stable) if and only if E(M) is stable (asymptotically
stable). So we need only determine the stability (asymptotic
stability) properties of E(M) to determine the stability (global
asymptotic stability) of the digital filter described by (3.4). If
the set M is unstable then we can draw no conclusion about the

stability of the digital filter described by (3.4).
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Using the results of the previous chapter, we show that M is
asymptotically stable by choosing a p > 1 sufficiently small and then
showing that pM is stable by using the constructive algorithm. For
the digital filters considered in this dissertation, the choice of
p = 1.0000001 will be used to show the asymptotic stability of the
set of extreme matrices in all of the cases we will consider.

Since the constructive algorithm is used to show that the
equilibrium x = 0 of a given digital filter (3.4) 1s globally

asymptoticallv stable, then in particular, no limit cycles will exist

in this digital filter.
The appendices contain descriptions and listings of the computer
programs that implement the Brayton-Tong constructive algorithm when

applied to the stability analysis of digital filters.
C. Specific Digital Filters

In this section, we give the details of the application of the
Brayton-Tong constructive algorithm to the stability analysis of the
folloying four digital filter structures:

a) Direct form digital filter
b) Coupled form digital filter
c) Wave digital filter
d) Lattice digital filter.
For each of the digital filter structures considered, the

region, in terms of the filter parameters, where the linear filter
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(i.e., the filter without quantization or overflow) is globally
asymptotically stable is given. Since the linear filter is unstable
outside of this region, we are not interested in the nonlinear filter
whose parameters fall outside of this region. Next we present the
particular nonlinear structures for each type of filter that we
consider. Finally, for each nonlinear filter structure we derive the

set of extreme matrices used by the constructive algorithm.

l. Direct form digital filter

The second order direct form digital filter, which directly
implements a filter transfer function, has been investigated
extensively [7]. Since we only comsider filters with zero input, the
recursive parts of the direct form 1 structure and the direct form 2
structure are equivalent. The linear recursive part of this digital
filter is shown in Figure 3.3.

The region where this linear filter is globally asymptotically
stable in terms of the parameters a and b is derived by considering
the transfer function of the linear filter,

: 2
H(z) = T—z— . (3.9)

z —-az~-b
Using Jury's criterion [8], it can be shown that the ideal second
order digital filter is globally asymptotically stable if and only if
Ip] <1

(3.10)
|a|+b<1o
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This stability region corresponds to the triangular region shown in
Figure 3.4. The linear filter is globally asymptotically stable for
all coefficients inside this region.

When the linear second order direct form digital filter is
implemented in fixed-point arithmetic, there are two possible ways of
placing the quantization nonlinearity. Quantization can be performed
immediately after each multiplication. This nonlinear second order
digital filter structure is shown in Figure 3.5, with Q representing
a quantizer. Alternatively, the results of the two multiplications
may be added with full precision and only one quantization is
needed. This structure is shown in Figure 3.6. For both possible
quantizer configurations, the overflow nonlinearity, P, is placed
after the adder as shown. We next develop the set of extreme
matrices for each structure.

a. One quantizer The structure for the second order direct

form digital filter with one quantizer is shown in Figure 3.6. We
will consider the quantization and overflow nonlinearities
together. With this assumption, the state equations are

xl(k+1) = f[axl(k) + bxz(k)]

(3.11)

X, (kt1) = x, (k)

where f£(*) is the combined quantization and overflow nonlinearity.
Following the technique outlined in Section B of this chapter,

the state equations are written as
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Figure 3.3. Linear second order direct form digital filter

(-2, -1) -1 2, -1

Figure 3.4. Region in the parameter plane where a linear second

order direct form filter is globally asymptotically
stable
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X2

Figure 3.5. Direct form digital filter with two quantizers

u + xl'
—D‘ ;; }-—-—D P ] z-1
+

X2

Figure 3.6. Direct form digital filter with ome quantizer

www.manaraa.com



32

x(k+l) = M(x(k))x(k).
The matrix M(x(k)) is given by

Mx(k)) = [ Yxa A ] , (3.12)

where

f[axl + bx2]

o(x) = ax1 + bx2

. (3.13)

Since we view the quantization and overflow nonlinearities as

belonging to a sector, the function 9(x) is bounded by constants,

al and az such that
al < ¥(x) < a, . (3.14)
For the particular nonlinearities which we consider, we have

al =k
° (3.15)
az = kq

where k, and lc.q are defined by Equations (3.2) and (3.3),

respectively. The extreme matrices of the set M are

aa aib
E(E) - [} i ol 1’2 [ ] (3'16)
1 0

In this case, for each point (a,b) there are two extreme matrices

given by A; and Ag, where
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ka kb ka kb
Al = ° ° AZ = q q . (3017)
1 0 1 0

If the overflow nonlinearity is absent, then @ = 0 and the set of
extreme matrices in this case is the same as for one saturation or
zeroing overflow nonlinearity.

b.

Two quantizers The structure of the second order direct

form digital filter with two quantizers is shown in Figure 3.5. We
cannot combine the quantization and overflow nonlinearities in this

case. The state equations are

%) (etl) = P{Q [ax; (k)] + Q, [bx, ()1}
xz(k+1) = xl(k) .

(3.18)

Following the technique outlined in Section B of this chapter,

the state equations are written as

x(k+1) = M(x(k))x(k)

where
and
(3.20)

P{Ql[axll + Q,[bx, ]}

0y(x) =

Q lax; ] + Q,[bx,] *
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When the M(x(k)) given by (3.19) and (3.20) is multiplied by x(k),
the state equations are obtained.

Since we view the quantization and overflow nonlinearities as
belonging to a sector, the functions ¢1(x), 02(x) and ¢3(x) are

bounded by constants such that

a, < ¢i(x) <a, i=1,2,3 (3.21)
where

%1 %% =0

@1y = Gy, = kq (3.22)

The functions Ql(x)¢3(x) and Oz(x)03(x) are also bounded by

constants, Bi and Yi’ 1 = 1,2 such that

B, € ¢ (x)0.(x) < B
1 1 3 2 (3.23)

-
—
N

¢2(x)¢3(x) < Y,
where

= min(a) 0505 91199 G100 %5055) =k k)

) =k
9 (3.24)

Yy = min(ay 050, 9y 05 Ggplays Ggpday) = kik

g = max(a),0q,, &)1, 0),05,, 6,0,

Yy = max(ayyaz)s 0p1d3ps Gpplyys Apptgy) = ko

The extreme matrices of the set M are
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Bia Y.b
E(M) = 351, 1,5=1,2). (3.25)
1 0

For each point (a,b) in the parameter plane, there are four extreme

matrices used in the Brayton-Tong constructive algorithm. For this

example, these extreme matrices are

. K .
: k k k k kb
A = quoa q °b A =|fa 0 q
L 0 2 11 o]
_ _ (3.26)
ka kkb ka kb
q qo q q
A3= A4: N
|1 0 |1 0 |

If the overflow nonlinearity is absent, then az; = 81 =Y, = 0 and
the set of extreme matrices in this case is the same as for the

filter with a saturation or zeroing overflow nonlinearity.

2, Coupled form digital filter

The coupled or normal form digital filter was first proposed by
Rader and Gold [9] as a digital filter structure whose pole locations
were less sensitive than the direct form structure to parameter
errors. However, the coupled form can only realize complex conjugate
poles., With finite wordlength parameters this structure.also has a
uniform grid of possible pole locations [5]. The linear recursive
part of a coupled form digital filter whose poles are at a = jb and

that has zero input is shown in Figure 3.7.
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Figure 3.7. Linear second order coupled form digital filter
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The linear filter is globally asymptotically stable if and only
if its poles lie within the unit circle. Equivalently, the

parameters a and b must satisfy

a? + b2 < 1. (3.27)

This region corresponds to the interior of a unit circle in the a-b
parameter plane.

As in the direct form digital filter, there are two possible
ways of placing the quantization nonlinearity. Quantization can be
performed immediately after each multiplication and thus four
quantizers will be needed. This filter structure is shown in Figure
3.8 with Qi’ =] 000 4 representing the quantizers. Alternatively,
the results of two multiplications may be added with full precision
and then quantized. This implementation uses two quantizers and is
shown in Figure 3.9. For both possible placements of the
quantization nonlinearity, the overflow nonlinearities, Pl and Pz,
must.be placed after each additior as shown. We next develop the set
of extreme matrices for each structure that will be uéed by the

constructive algorithm.

a. Two quantizers The coupled form digital filter structure

to be analyzed is shown in Figure 3.9. As in the direct form digital
filter, we assume that the overflow and quantization nonlinearities
before each delay are combined. With this assumption, the state

equations for the filter are
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(k+1) = £, [ax, (k) - bx. (k)]
B! 114% 2 (3.28)

xz(k-l'l) = fZ[bxl(k) + axz(k)]
where f1(°) and fz(') are the combined quantization and overflow

nonlinearities.

Following the technique outlined in Section B of this chapter,

the state equations are written as
x(k+1) = M(x(k))x(k).

By defining

f1[axl - bx2]

¢ (x) = -
1 ax, bx2

(3.29)
f,[bx, + ax,]
0,(x) = 2% 2

bx1 + ax,

the matrix M(x(k)) is given by

él(x)a -01(x)b
M(x(k)) = . (3.30)
Qz(x)b 02(x)a

The functions ¢1(x) and Qz(x) are bounded by constants

a, €d.(x)<a
1 -1 2 (3.31)

For the particular nonlinearities we consider, these constants are

a =p =Lk
171 " (3.32)
Gy = s2 = kq ¢
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The extreme matrices of the set M are

aia -aib
E(_l_d_) = s 1,3=1,2 7. (3.33)

ij Bja

Therefore, for each point in the a-b parameter plane, the

constructive algorithm uses four extreme matrices. If the overflow

nonlinearities are absent, then @ = B1 = 0 and the set of extreme

matrices in this case is the same as for the filter with two
saturation or zeroing overflow nonlinearities.

b, Four quantizers The structure of the coupled form

digital filter with four quantizers is shown in Figure 3.8. The

state equations are

x) (etl) = P, {Q [ax; (k)] + Q) [-bx, (k) 1}

(3.34)
X, (ktl) = PZ{Q3[bx1(k)] + Q,[ax, (k) 1}.

To apply the constructive stability algorithm, we write the

state equations as
x(k+l) = M(x(k))x(k)
where

OI(x)¢3(x)a -¢1(x)04(x)b
M(x(k)) = |- (3.35)
¢2(x)¢5(x)b OZ(x)OG(x)a

and
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Pl{Ql[axll + Q2[-bx2]}

o, (x) =

PZ{Q3[bx1] + q,lax, ]}

b, (x) =
2 Q,lbx, | + Q, [ax, ]
(3.36)
Q, [ax,] Q,[-bx,]
1 1 2 2
3 ax; 4 bx2
Q, [bx, ] Q, [ax,]
3 1 . 4 2
QS(x) " Thx 06(x) " ¢
1 2
The functions Qi(x), are bounded by constants aij such that
@, < &i(x) < Gy s i=1,2,3,4,5 (3.37)
where
%y =% =k,
., =qa, =1

31 = %1 = %) =% =0

O3 T ¥4y = %53 = %y " K o

Therefore, the functions Gl(x)¢3(x), OI(x)¢4(x), ¢2(x)05(x) and

Oz(x)os(x) are bounded by constants B 61, € i=1,2

i) Yi,
such that

81 < él(x)03(x) <8,

Y, € & (x)¢,(x) < Y
1 1 4 2 (3.39)

61 < ¢2(x)05(x) <38

€ < ¢2(x)06(x) <€

2
2
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where

8 =Y =§ =g =k k
1 1 1 1 q o (3.40)
By=vy=8;=¢ =k.
The extreme matrices of the set M are
Sia -ij
E(M) = 5. b cal? i,j,k,2 = 1,2 R (3.41)
k 2

For this filter, there are sixteen extreme matrices for every point
in the a-b parameter plame. If the overflow nonlinearities are
absent, then Bl = Yl = 61 = sl = 0 and the set of extreme matrices in
this case is the same as for the filter with two saturation or

zeroing overflow nonlinearities.

3. Wave digital filter

Wave digital filters are a class of low—-sensitivity digital
filter structures first advanced by Fettweis [10]. These structures
can be synthesized from equally terminated LC analog filters by
replacing the analog elements by appropriate digital realizations.
Wave digital filters are either full-synchronic or half-synchronic.
In a full-synchronic filter, the arithmetic operations are carried
out, at least in principle, simultaneously at periodically recurring
instants. In a half-synchronic filter, the various arithmetic

operations are still carried out at the same rate, but do not take
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place simultaneously, even in principle. We only consider full-
synchronic wave digital filters, since most conventional digital
filters are full-synchronic. A general wave digital filter is
characterized by an n-port network as illustrated in Figure 3.10.
}Since wave digital filters are a class of filters, we only consider a
specific example of a wave filter synthesized from an LC network in
the next subsection.

a. Specific wave digital filter considered The wave digital

filter structure which we will examine is based on a general second
order lowpass LC filter shown in Figure 3.11. This section can
represent many types of filters, e.g.. Butterworth or Chebychev.
Following the synthesis procedure of Antoniou [11, we identify
the series and parallel interconnection as shown in Figure 3.12(a).
The wave digital filter is then formed with one parallel wire
interconnection and one series wire interconnection, as in Figure
3.12(b). The resulting structure, in terms of delays, adders and
multipliers is shown in Figure 3.13. The state equations for the
linear wave digital filter with zero input (al = a, = 0) are
xl(k+l) = cllxl(k) + clzxz(k)

(3.42)
xz(k+1) = c21x1(k) + °22x2(k)

where
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21 -1 -1
ay b3 Ya, b, a, b,
a a
R) N Ry
* *
b, b,

Figure 3.10. General full-synchronic wave digital filter

R L
b VAY, Jm\ o
Input C o R Output
c M

Figure 3.11. General second order LC lowpass analog filter
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X O
C
(a) Identification of wire interconnections
1 I I 2 1 - 2
- 3y  H——— ~—
bl a
2
a { b @
3 c 3

(b) Wave digital filter

Figure 3.12, Synthesis of second order LC lowpass wave digital
filter
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ey == 1-m(2+m)

c =

127 %2 (3.43)
Cyy =~ m1(2 + m, + m3)

Coy = 1+ o, + mgy .

Let R,, and Gi represent the port resistance and conductance,

1] 3
respectively of the 1th port of the jth interconnection. Let T
represent the sample period of the filter. The calculation of the

multiplier values proceeds as follows.

Interconnection 1 (Pl parallel adapter):

1
11 * %
2C
31 = T
(3.44)
1 2C
€ =Cn*Cy "% *T
1 C
m =G£_lg___z_-1-.-_25(1:)__
1 G 1, 2C c, '
21 YT 1+ 2R (P
Interconnection 2 (S2 series adapter):
1 1
R = =
12 G 1, 2C
21 'E'}'—,f
R22 = R
2L
R32 -5 (3.45)
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| 2
1 C
o “2R), } g+ 2P
2 Ryp Ry tRy R+ 2%
=+ 2(99
gt 2G
) -1
R T ¢
1+rQ +id +2&&
Ty .
3 Rp+Ry +Ryy 1 L pa 2
Ls2d T
gt 27
c
- 11+ rS)]

[ 1L L, C, °
1+ R(E) + 3D + 2P

Given the analog filter of Figure 3.l1ll, the actual values of R,
L and C depend on the desired type of filter input impedance and
cutoff frequency. Impendance scaling is used to change the input
impedance of the filter. The magnitude scaling constant, km, is

defined as
kK =2 (3.46)

where Z is the unscaled input impedance, and Z' is the desired
impedance. If we apply impedance scaling to the filter, the new

element values are R', C' and L' defined as

R' = k R
m
L' =k L (3.47)

c' =

=lo
g~ ie 8
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However, impedance scaling does not change any of the multiplier
values in the wave digital filter. Frequency scaling is used to
change the cutoff frequency of the filter and the frequency scaling
constant, kf, is defined as

m'
K =S (3.48)

f w
co

where wco is the unscaled cutoff frequency and méo is the desired
cutoff frequency. If we apply frequency scaling to the filter, the

new element values are R", C" and L" defined as

R" - R
L =L (3.49)
X
£
C
Cl' B e—e .
kf

When frequency scaling is applied to the wave digital filter, the
values of the multipliers change. As the cutoff frequency of the
filter increases, the values of L and C decrease. However, as the
cutoff frequency of the filter increases, the sample period of the
digital filter should also decrease. Hence, we let a = %-and
b=
the wave digital filter multipliers are

- 23
mM*1TF 2a

-1
M "T+a+b+ 2ab (3.50)

n = el t 8)
3 1+a+hb+ 2ab

= m2(1 + a)o

We also assume R = 1. With these assumptions, the values of
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For the passive LC network of Figure 3.11, L > 0 and C > 0 and
so the wave digital filter parameters are also, a > 0 and b > O.
Fettweis [12] shows that all wave digital filters derived from
classical LC networks are also pseudopassive, and therefore globally
asymptotically stable, when infinite wordlength is used. Therefore,
for the example considered here, the linear wave digital filter is
globally asymptotically stable when a > 0 and b > 0.

We consider two possible structures for a nonlinear wave digital
filter. Quantization and overflow nonlinearities can be applied at
the states of the filter. This two quantizer structure is shown in
Figure 3.14. This structure has received previous attention by other
authors. We also consider quantization after each miltiplication, as
shown in Figure 3.15. 1In this case, there are three quantizers.

This structure is a more realistic implementation of the actual
filter using a microprocessor. We do not consider overflow
nonlinearities due to the large number of adders. We next present
the procedure used to generate the extreme matrices that are used by
the constructive algorithm.

b. Two quantizers The wave digital filter structure we

consider is shown in Figure 3.14. As in the direct form and coupled

form filters, the quantization and overflow nonlinearities are

considered together. Under this assumption, the state equations are
xl(k+l) = fl[cllxl(k) + c12x2(k)]

(3.51)
x2(k+1) = f2[c21x1(k) + czzxz(k)]
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where fl(.) and f2(°) are the combined overflow and quantization

nonlinearities. The coefficients Ci4 i,j = 1,2 are defined by

Equations (3.43) and (3.50).

Following the technique outlined in Section B of this chapter,

the state equations are written as
x(k+l) = M(x(k))x(k)

where

4 (x)ey) & (x)ey,

M(x(k)) = [¢1(x)c21 02 (x)c22

and

£yleyy X + ¢pp%,yl

. (x) =
1 ¢11%y + 19%9

£ylcy %) + eypx,]

¢, (x) = .
2 1% + CopXy

The function ¢1

a, € ¢1(x) <a

1 2
81 < 02(x) < 82 .

For our analysis,
@ =8 =k

%y = B2 = kq ¢

The extreme matrices of the set M are

and 02 are bounded by constants,

(3.52)

(3.53)

(3.54)

(3.55)
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E(M) = [:1211 :1:12]’ 1,9 = 1,2 ). (3.56)
j21 Tjr22 .

Therefore, the constructive algorithm uses four extreme matrices for

each point in the a-b parameter plane. If the overflow

nonlinearities are absent, then @, = Bl = 0 and the set of extreme

matrices for this case is the same as for the filter with saturation

or zerolng overflow nonlinearities.

c. Three quantizers The wave digital filter structure we

consider is .shown in Figure 3.15. Note that only quantization
nonlinearities are present in this filter. The state equations for

this structure are
x) (k+1) = -x (k) + 20, [-m %, ()] + Qy{m,Q, [-m x, (k)1} +
+ Q) [myx, (k)]
(3.57)
xy (1) = 20 [-m x) ()] + Qy{myQ, [-m;x, (k) 1} +
+ 03{mqQ; [m;x, () 1} + Q, [myx, (k)] +

+ Q3[m3x2(k)] + xz(k) .

To apply the constructive stability algorithm, we write the

gtate equations as
x(k+1) = M(x(k))x(k).

By defining,
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(3.58)

5 m3Q1[-m1x1]

©
(=]
~
»
~r
]

-1 - Zmlél(x) - mlm2¢1(x)¢4(x)

©
~l
~
e
~
/]

- 2m1¢1(x) - m1m2¢1(x)04(x) - m1m301(x)Q5(x)
QB(x) =1+ m2¢2(x) + m303(x)

we can write M(x(k)) as

06(x) m2¢2(x) ‘ :
M(x(k)) = 0. (x) %(x) . (3.59)

The functions Oi(x), 1 =1, **¢, 5, are bounded by constants,

@ < @l(x) < @,
By € 9(x) < B, |

Y € 8,00 < v, (3.60)
By € 8,(x) < B,

Yl < Qs(x) < 72

where
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where

Therefore, we
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=y ao
1 (3.61)

82=Yz=kq.

b

01(x)¢4(x) and Ol(x)Os(x) are also bounded by constants

¢ . (x)0,(x) < &

177774 2 (3.62)
Ql(x)QS(x) < €,
e, =0

1 ) (3.63)
Ezskqo

¢6(x), 07(x) and 08(x) are also bounded by constants,

o6(x) < ;2
07(x) < n, (3.64)

dg(x) < 6,

min{[-l-Zmlai-mlmzsj], i, = 1,2}
max{[-l-Zmlai-mlmZGj], 1, = 1,2}
min{[-2m1aiﬂm1m26j-m1m3ek], 1,3,k = 1,2} 3.65)
max{[-2m1a1ﬂm1m26j-mlm3ek], 1,3,k = 1,2}

min{[1+m281+m3Y 1, 1,3 = 1,2}

J
max{[l+m281+m31j], 1, = 1,2} .

write the exteme matrices of the set M as
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z B

EM) = (| 1 :2 I, 1,5,k,0 =1,2) . (3.66)
L 2

Thus, for each point in the a-b parameter plane, the constructive

algorithm uses sixteen matrices.

4. Lattice digital filter

Since their introduction by Itakura and Saito [13], lattice
digital filters have been used extensively in the area of speech and
signal processing [14]). A general lattice filter is shown in Figure
3.16(a) as a cascade of lattice sections. The particular lattice
structure we consider is the two multiplier lattice of Gray and
Markel [15]. One section of this type of lattice filter is shown in
Figure 3.16(b). Gray and Markel [15] have shown that the linear
digital lattice filter will have all of its poles within the unit
circle, and thus will be globally asymptotically stable, if and only

if all of the km parameters satisfy
Ikml <1l, m=1, 2, eee, n, (3.67)

We investigate two possible structures for the second order
lattice digital filter. In the first structure, the quantization and
overflow noniineatities are applied at the states of the filter. We
consider this first structure since it has been studied previously.

This second order filter structure is shown in Figure 3.17. 1In the
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Lattice Lattice
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Lattice

znu+1‘
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a) General lattice structure

v

zZB

b) Two multiplier lattice section

Figure 3.16. General lattice digital filter structure
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gsecond structure, quantization is assumed to take place after each

multiplication and overflow is placed after each addition. This

structure with three quantizers is a more realistic implementation of

the actual filter using a fixed-point microprocessor and is shown in

Figure 3.18.

a. Two quantizers The structure of the second order lattice

digital filter with two quantizers is shown in Figure 3.17. Again,
we consider the quantization and overflow nonlinearities together.
The state equations for the structure are
xl(k+1) = fll-klxl(k) - kzxz(k)]
2 (3.68)
xz(k+1) = f2[(1-k1)x1(k) - klkzxz(k)]
where fl(') and f2(-) are the combined quantization and overflow
nonlinearities.
Following the technique outlined in Section B of this chapter,

the state equations are written as
x(k+l) = M(x(k))x(k).
By defining

fll-klx1 - kzle
$ X)) = ==
1%1 ~ Ko¥y

2 (3.69)
fz[(l-kl)xl - klkzle

2
(l-kl)xl - k1k2x2

¢, (x) =

the matrix M(x(k)) can be written as
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-klol(x) - kzél(x)

2 . (3.70)
(1-K1)0, (x) = k k)8, (x)

M(x(k)) =

The function Gl(x) and ¢2(x) are bounded by constants

a, €& (k) <a
11 2 (3.71)
81 < Oz(x) < 82
where
a, =8, =k
171 " (3.72)

azsszakqo

The extreme matrices of the set M are

-k,a -k,
EQY) = H 21 3 =1,2 ). (3.73)
(KB, kB

Thus, for each point in the kl-kz parameter plane, the constructive
algorithm uses four extreme matrices. If the overflow nonlinearities
are absent, then al = Bl = 0 and the set of extreme matrices for this
case is the same as for the filter with two saturation or zeroing
overflow nonlinearities.

b. Three quantizers The lattice digital filter to be

considered is shown in Figure 3.18. The state equations for this

digital filter are
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x, (ktl) = P {=Q, [k x, (k)] - Qqlk,x,(K)]}
(3.74)

To apply the constructive stability algorithm, we write the state

equations as
x(k+1) = M(x(k))x(k).
The matrix M(x(k)) is given by

“k.d. (x)®, (x) “k,0,(x)0, (x)
M(x(k)) = 11 g 272 4
QS(X)[I‘k1°1(X)°3(x)@4(X)] 'k1k202(X)¢3(x)04(x)05(x)

(3.75)

where
Q,[k.x, 1]
0, (x) = ‘2_1{':1?'1—
171

k,x

$.(x) =
2 2%)

°1[k1P1('Q2“‘1"11 - Q3[k2x21)l
klPl(-QZ[klxll - Q3[k2x2])

¢3(x) = (3.76)

P {0,k %] - Q,k,x,1}
=Q,lk;x,) 1 = Qglk,x, ]

04 (x) -

Bylx) + QiR ()l ] = Qylkyx, DI}

ﬁs(x) =

The functions ¢i(x), i =1,°¢*, 5 are bounded by constants
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Q
n

¢1(x) < a,

©w
n

<
—
N

8(x) < v, 3.77)

O
n

1 Qa(x) < 62

™
n

1 ¢s(x) < 82
where

al = Bl - Yl = (

a, =B, = Y. = k
2 "2 2 g (3.78)

§, = €, = ko

255251.

Combinations of these functions are also bounded by constants, i.e.,

5, < Ql(x)04(x) < 9

n, < & _(x)8,(x) < n
1 2 4 2 (3.79)
01 < ¢2(x)¢3(x)¢4(x)05(x) < 92

A € 050 [1-K70, ()8, (009, ()] < A,

where, for the nonlinearities which we consider,

gy =N = kokq

C =N, = k :
2 2 , 3 (3.80)
1 kokq

2
92 - kq

, v
1 min[ei(l'klanksz)’ i,3,k,2 = 1,2]

[ ]
[ ]

>
]

>
#

” max[ei(l-kfcjvksz), 1,§,k,2 = 1,2] .
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Thus, the extreme matrices of the set M are

-k.z -k,n
2
E(M) = [lkl 1 _klkiel] » 1,3,k,2 = 1,2 .

(3.81)
In this case, the constructive algorithm uses sixteen extreme
matrices for every point in the kl-k2 parameter plane.
If the overflow nonlinearities are absent, the set of extreme
matrices is not the same as for the filter with saturation or zeroing
overflow nonlinearities. For this case, the constants that bound the

combinations of the functions in (3.79) are
;1 =0, = 01 = 0

8, =k (3.82)
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IV, COMPARISON OF STABILITY RESULTS BY THE CONSTRUCTIVE

ALGORITHM WITH EXISTING STABILITY RESULTS

In this chapter, we present the stability results obtained by
applying the Brayton~Tong constructive algorithm to different
nonlinear digital filter structures. For each structure, we present
the best known existing stability results. There are two categories
of existing stability results for fixed-point digital filters. Some
of the existing results are sufficient conditions for the absence of
limit cycles in a digital filter. Other existing results are
sufficient conditions for the global asymptotic stability of a
digital filter. Results in the latter category are also sufficient
conditions for the absence of limit cycles. We compare these
existing stability results with the stability results due to the
constructive algorithm. We will use the constructive aigorithm to
ascertain the global asymptotic stability of the equilibrium x = 0 of

a digital filter which also guarantees the absence of limit cycles.
A. Direct Form Digital Filter

For a direct form digital filter, we consider the filter
implemented with one or two quantizers. For both of these
structures, we review existing results on the stability of the direct
form filter and compare these results with the global asymptotic

stability results obtained from the constructive algorithm.
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l. One quantizer

a. Truncation quantizer For a second order direct form

digital filter with one truncation quantizer and no overflow
nonlinearity, the largest region in the a~b parameter plane where
zero—input limit cycles are proven to be absent is shown in Claasen
[16]. This result is also reported in [7]. This region where limit
cycles do not exist is the same region in the parameter plane where
it is shown by Claasen and Kristiansson [17] that the direct form
digital filter with one saturation overflow nonlinearity is
asymptotically stable with nonzero input. We note that their
definition of asymptotic stability 1s different from our definition
of asymptotic stability. (Our definition of asymptotic stability is
the commonly used definition.) The interested reader is referred to
[17] for the exact definitions of their terms. The result of Claasen
[16] is now stated without proof.

Theorem 4.1 No zero—input limit cycles exist in the second
order direct form digital filter of Figure 3.6 with one truncation

quantizer and no overflow nonlinearity if the following is satisfied:

max |q(n)| < 1. (4.1)
n>0 .
a2
Ifz+b>0, q(n) is defined as
A, A
a(n) = - 7= fz (2 - D) (4.2)
1

and
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AI,AZ--;-t / F+0b. (4.3)

2
If %-+ b < 0, then q(n) is rewritten as
_rn+1 ’
q(n) = S1n0E) sin(Bn) (4.4)
where
r =v=-b , B = arccos %;-. (4.5)

This region in the a-b parameter plane where no limit cycles
exist for a direct form filter with one truncation quantizer is shown
as the unhatched region of Figure 4.1. Only half of the region is
shown since it is symmetric with respect to the b axis.

Limit cycles in a second order direct form digital filter with
only an overflow nonlinearity have been studied by Ebert, Mazo and
Taylor [18]. They show that no overflow oscillations exist in the
digital filter when saturation overflow or triangular overflow is
used. For two's complement overflow, it is shown that a necessary
and sufficient condition for the absence of limit cycles in the

filter is that
la] + [b] <1 . (4.6)

This region in the a~b parameter plane is depicted as the unhatched
region in Figure 4.2. Ebert, Mazo and Taylor also state that zeroing
overflow also leads to oscillations, but no analysis is presented in
[18] to justify this assertion. There are no results known that

investigate the limit cycles due to a zeroing overflow nonlinearity.

www.manaraa.com



70

Figure 4.1. Regilon where a direct form filter with oae truncation
quantizer is free of limit cycles by Theorem 4.1
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Figure 4.2, Region where a direct form filter with one two’s
complement overflow nonlinearity is free of limit cycles
by Equation 4.6
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To apply the conmstructive algorithm to the direct form filter
with one truncation quantizer, we use the extreme matrices determined
by Equation (3.16). The region of global asymptotic stability in the
a-b parameter plane obtained by the constructive algorithm for this
filter with a truncation quantizer and saturation, zeroing or no
overflow is shown in Figure 4.3. The regions in the parameter plane
where this digital filter is globally asymptoticaliy stable with
triangular and two's complement overflow are shown in Figures 4.4 and
4.5, respectively. These regions are symmetric about the b axis.

The horizontally hatched region indicates the region where at least
one of the eigenvalues of an extreme matrix has a magnitude greater
than one. Vertical hatching indicates the rest of the region where
we can draw no conclusion about the stability of the filter. The
stability results by the constructive algorithm for the overflow
nonlinearity without quantization are the same as the results for the
overflow and truncation quantization nonlinearities combined.

When quantization is considered separately, the constructive
algorithm yields the same region in the parameter plane where the
filter is globally asymptotically stable as the result of Claasen
[16] that deals with the absence of limit cycles. If we consider the
overflow nonlinearity only, then the stability results by the
constructive method are more conservative than those of Ebert, Mazo
and Taylor [18] for saturation or triangular overflow. However, the

constructive algorithm yields the same region where limit cycles are
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Figure 4.3. Region where a direct form filter with one truncation
quantizer and saturation, zeroing or no overflow is
g.a.8. by the constructive algorithm
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Figure 4.4. Region where a direct form filter with one truncation
quantizer and triangular overflow is ge.a.s. by the
constructive algorithm
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Figure 4.5. Region where a direct form filter with one truncation

quantizer and two's complement overflow is g+a3.8. by the
constructive algorithm

www.manaraa.com



76

absent for the filter with truncation quantization and two's
complement overflow as Ebert, Mazo and Taylor for a single two's
complement overflow nonlinearity. This conclusion is not surprising
since the extreme matrices used by the constructive algorithm for the
overflow nonlinearity only are the same as those used for the
overflow and truncation nonlinearity considered together.

b. Roundoff quantizer For the direct form digital filter

with one roundoff quantizer, Claasen et al. [19] have derived a
sufficient condition for the absence of zero-input limit cycles. To
develop sufficient conditions for the absence of limit cycles in the
filter structure shown in Figure 3.6 with just the quantization
nonlinearity, consider a nonlinear discrete system with one nonlinear
element, Q, depicted in Figure 4.6(a). In considering zero-input
limit cycles, the linear part of the system, W, is described by the

transfer function, W(z) where X(z) = W(z)Y(z). For Q, we assume that

Q(0) = 0
0(31(::—)<k, x#0

[Q(x + h) - Q(x)]h > 0, for all x and h

4.7)
Q(-x) = - Q(x) .

These assumptions imply that the nonlinear characteristic lies in the
sector shown in Figure 4.6(b) and is a nondecreasing, odd and
symmetric function of x. The result of Claasen et al. [19] is now

stated without proof.
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b) Sector in which Q must lie

Figure 4.6. Nonlinear discrete system considered in Theorem 4.2.
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Theorem 4.2 Let the discrete system be modeled as depicted in
Figure 4.6(a), containing a linear part described by the transfer
function W(z), which must be finite for |z]| = 1, and a nonlinearity
satisfying (4.7). Limit cycles of length N are absent from the
discrete system if there exist ap, Bp > 0 such that for
2=0, 1, *, |3,

N-1 P P 1
Re [W(zz) 1+ pfl {ap(l -zp) +8 (1+ zz)}:l - <0
(4.8)
12
where z, = e and |r| denotes the integer part of r.

Claasen et al. [19] implement this criterion by transforming it
into a linear programming problem and applying existing linear
programming algorithms. The region in the parameter plane where no
limit cycles exist is approximated by taking a large value of N
(esge, N = 70). For roundoff quantization (k = 2), the region in the
parameter plane where no limit cycles exist by Theorem 4.2 is
indicated as the unhatched region in Figure 4.7. This region is
symmetric about the b axis. This criterion can also be applied to the
case of one magnitude truncation quantizer, but the region where no
limit cycles exist is smaller than the region obtained by Theorem 4.1.

The extreme matrices determined in (3.16) were used to apply the
constructive algorithm to the stability analysis of the direct form

digital filter with one roundoff quantizer. The region of global

asymptotic stability in the parameter plane obtained by the
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Figure 4.7, Region where a direct form filter with one roundoff
quantizer and no overflow is free of limit cycles by

Theorem 4,2
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constructive algorithm for this filter with a roundoff quantizer and
saturation, zeroing or no overflow is shown in Figure 4.8. For this
case, the region where the filter is globally asymptotically stable
is slightly larger than the region obtained by applying Theorem

4,2, Again, only half of the regions are shown since they are
symmetric about the b axis. The horizontally hatched area indicates
the region where at least one of the extreme matrices has an
eigenvalue with magnitude greater than one. Limit cycles have been
found by others in all of the horizontally hatched region [7].
Vertical hatching indicates the remaining region in which the
qualitative analysis of the filter is uncertain.

For roundoff quantization and triangular overflow, the region in
the parameter plane where the filter is globally asymptotically
stable by the constructive algorithm 1s indicated in Figure 4.9. The
corresponding region when two's complement overflow is used is shown
in Figure 4.10. Again, horizontal hatching indicates the region
where at least one of the extreme matrices has an eigenvalue with
magnitude greater than one. Vertical hatching indicates the rest of
the uncertain region where we can draw no conclusion about the

stability of the system. These results appear to be new.

2., Two quantizers

An absolute stability criterion by Jury and Lee [20] can be used
to give a sufficient condition for the global asymptotic stability of

the second order direct form filter with two truncation quantizers or
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Figure 4.8. Region where a direct form filter with one roundoff
quantizer and saturation, zeroing or no overflow is
ge.a.8. by the constructive algorithm
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Figure 4.9. Region where a direct form filter with one roundoff
quantizer and triangular overflow is g.a.s. by the
constructive algorithm
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Figure 4.10,

Region where a direct form filter with one roundoff
quantizer and two's complement overflow is g.a.s. by
the constructive algorithm
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two roundoff quantizers and no overflow. A nonlinear system is
called absolutely stable if the equilibrium x = O is globally
asymptotically stable for all nonlinearities satisfying Equation
(4.9).

A discrete system with several nonlinearities is represented by
the system shown in Figure 4.11. The m nonlinear elements are
represented by the vector valued funct;on £(g) where fi(ai) is the
output of the 1th nonlinear element. The input of this element is
the ith component of the vector g. The inputs and outputs of the
nonlinear elements are interconnected by linear filters with transfer
functions gij(z), which are assumed to be controllable and observable
[21]. The functions gij(z) are the elements of the m x m transfer
matrix G(z). We assume that each element gij(z) has all of its poles
within the unit circle except possibly onme pole at z = 1. The linear
filter with the transfer function gij(z) connects the output of the
jth nonlinear element and the input of the ith nonlinear element. We

assume that nonlinearities fi(oi) satisfy the following conditions:

i) fi(O) = Q, 1=1,2, ¢ee,
fi(oi)
i1) 0K _Ui— < kii’ for all 01#* 0
(4.9)
111) o(k) + 0 implies y(k) + O
df_ (a,)
iv) == ¢ di L o
%1

where kii is the 1th diagonal element of the m x m matrix K. We now
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Figure 4.11. A general discrete system with many nonlinearities
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state the absolute stability criterion of Jury and Lee [20] without
proof.

Theorem 4.3 The system of Figure 4.11 satisfying the above
conditions on G(z) with nonlinearities described by (4.9) is

absolutely stable 1if
- *
H(z) = 2K © + G(z) + G (z) > 0, for all |z|=1 (4.10)

where G*(z) denotes the conjugate transpose of G(z) and ">" means
that the matrix is positive definite.

A sufficient condition that guarantees the absence of limit
cycles in a direct form filter with two quantizers that is equivalent
to Theorem 4.3 is found in Claasen et al. [19].

For’the second order direct i1orm digital filter with two
quantization nonlinearities as shown in Figure 3.5, the matrix G(z)
may be written as

-1 -1
6(z) = [ L, TE, ] . (4.11)
~bz -bz

The matrix H(z), given by

=

-~ = az - az -az - bz

B(z) =| L o | @
= bz" - bz

gl

-2
-az - bz 22

must be positive definite for |z| = l. For magnitude truncation
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quantizers, kll - k22 = 1, The corresponding region in the parameter
plane where the filter is globally asymptotically stable is shown as
the unhatched region in Figure 4.12. Only half of the region is
_shown, since it is symmetric about the b axis. For two roundoff
quantizers, kl1 = k22 = 2., The region where the filter 1is

globally asymptotically stable for this case is presented in Figure
4,13,

We note that Theorem 4.3 cannot be readily applied to triangular
or two's complement overflow nonlinearities, since nonlinearities
described by (4.9) are constrained to lie entirely in the first and
third quadrants.

To apply the constructive stability algorithm to this filter
structure, we use the extreme matrices determined in Equation
(3.25). The regions in the parameter plane where the digital filter
is globally asymptotically stable by the comstructive algorithm for
all cases are shown as the unhatched regions in Figures 4.14 to
4,19, Horizontal hatching indicates the region where at least one
extreme matrix has one eigenvaiue with a magnitude greater than
one. Vertical hatching indicates the rest of the region where we can
draw no conclusion about the stability of the system.

As can be seen from Figures 4.l14 and 4.17, the constructive
algorithm obtains a less conservative result than the application of
Theorem 4.3. Others have shown that limit cycles exist im this

filter with truncation quantization and no overflow for all of the
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Figure 4.12. Region where a direct form filter with two truncation
quantizers and no overflow is g.a.s. by Theorem 4.3
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Figure 40 13.

Region where a direct form filter with two roundoff
quantizers and no overflow is g.a.s. by Theorem 4.3
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e=== == Boundary by Theorem 4.3

Figure 4.14. Region where a direct form filter with two truncation
quantizers and saturation, zeroing or no overflow is
gea.8. by the constructive algorithm

www.manaraa.com



91

Figure 4.15. Region where a direct form filter with two truncation
quantizers and triangular overflow is g.a.s. by the
constructive algorithm
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Figure 4.16. Region where a direct form filter with two truncation
quantizers and two's complement overflow is g.a.s. by
the constructive algorithm
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Figure 4.17. Region where a direct form filter with two roundoff
quantizers and saturation, zeroing or no overflow is
g+a.s8. by the constructive algorithm
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Figure 4.18.

Region where a direct form filter with two roundoff
quantizers and triangular overflow is g.a.s. by the
constructive algorithm
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Figure 4.19.

Region where a direct form filter with two roundoff
quantizers and two's complement overflow is g.a.s. by

the constructive algorithm
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horizontally hatched region of Figure 4.14 [7]. For this filter with
roundoff quantization and no overflow, others have found that limit
cycles exist in most of the horizontally hatched region of Figure
4,17 [7]. All of the results obtained for the overflow
nonlinearities seem to be new. It is interesting to note that the
region in the parameter plane where the filter is globally
asymptotically stable is the same for two's complement overflow with

either one or twgo truncation quantizers.

B. Coupled Form Digital Filter

For the coupled form digital filter, we consider the fixed-point
filter implemented with two or four quantizers. For both structures
considered, we review existing results on the stability of the filter
and then compare these results with the stability results obtained by

the constructive algorithm.

l., Two quantizers

For the coupled form digital filter of figure 3.9, previous
results indicate that this structure is free of overflow and
quantization limit cycles when truncation is used in the quantizer.
Barnes and Fam [22] show that the coupled form is free of limit
cycles due to overflow nonlinearities. They consider autonomous

nonlinear systems of the type

x(k + 1) = £[Ax(k)] (4.13)
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where f(¢) is a bounded nonlinear function defined on RT,
Specifically, they assume the existence of a real number u > 0, such

that for every x ¢ R"
|f(x)|2 < u|x|2 (4.14)

where I-]z denotes the Euclidean vector norm on R", Let
HAKZ denote the matrix norm of A induced by the Euclidean norm. They

show that if
uuAH2 <1 (4.15)

then no autonomous limit cycles will exist in the system described by
(4.13). The coupled form filter of Figure 3.9 without the quantizers
fulfills condition (4.15) and thus no limit cycles exist. Jackson
[23] extends these results to also include the quantization
nonlinearity by noting that the truncation quantization nonlinearity
also fulfills the condition (4.15).

For roundoff quantizers, Barnes and Shinnaka [24] prove that
quantization 1imit cycles will not be supported by the coupled form
for parameters located within the unit square depicted in Figure
4,20, They consider the second order linear filter of Figure 3.7
described by the state equations,

xl(k + 1) = axl(k) - bxz(k)

(4.16)
xz(k +1) = bxl(k) + axz(k) .
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Letting £(+) denote roundoff quantization, the autonomous system with

two roundoff quantizers is defined as

xl(k +1) = f[axl(k) - bxz(k)]
(4.17)
xz(k +1) = f[bxl(k) + axz(k)] .
Their assertion and its proof are given here because we will extend

it to the case when overflow nonlinearities are present.

Asgertion 4.4 [24] For the system given by Equation (4.17), if

the point (a,b) is within the unit square of Figure 4.20, then
|xCk + 1], < |x()], - (4.18)

Proof: We consider the construction of embedded squares in
Figure 4.21. 1If x(k) is on the boundary of square 1 in Figure 4.21,
then x(k + 1) will be within or on the boundary of square 2.
Furthermore, if x(k) is on a midpoint of a side of square 1, then
x(k + 1) will be within or on the boundary of square 3. Thus, the
desired result follows.

Since the norm is decreasing monotonically, they conclude that
no limit cycles exist in the filter when (a,b) is within the unit
square.

When overflow is considered with.roundoff quantization, then the
coupled form filter will not support limit cycles when the poles are
within the unit square of Figure 4.20. This conclusion follows

immediately from Assertion 4.4. The proof of this assertion is the
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Figure 4.20. Region where a coupled form filter with two or
four roundoff quantizers and any overflow is free
of limit cycles by [24])
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Figure 4.21. Imbedded squares in state space of coupled form filter
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same if the operator £(*) in Equation (4.17) represents a roundoff

and overflow, since
|B(x)| < |x| (4.19)

where P(*) represents any of the overflow nonlinearities in Figure
3.2,

To apply the constructive algorithm to the coupled form digital
filter with two quantizers, we use the extreme matrices determined in
Equation (3.33). When truncation quantizers are used with any type
of overflow, the constructive algorithm shows that this filter is
globally asymptotically stable everywhere that the linear filter is
globally asymptotically stable. This result is identical to existing
results. For roundoff quantizers with any type of overflow, the
constructive algorithm shows that this filter is globally

asymptotically stable when the parameters a and b satisfy

a® + b2 < 0.25 . (4.20)

This region is a circle of radius 0.5 centered at the origin of the
a-b parameter plane. However, this region is smaller than the region
in the parameter plane where Barnes and Shinnaka [24] show that no
limit cycles exist. It is not too surprising that our results are
more conservative since we show that the filter is globally
asymptotically stable for a class of nonlinearities whereas Barnes

and Shinnaka consider some sgecific nonlinearities.
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2, Four quantizers

For the coupled form digital filter with quantizers after each
multiplication in Figure 3.8, the only known results deal with the
absence of limit cycles in this structure without overflow. When
truncation quantization is used without overflow, Jackson and Judell
[25] have glven a region where no limit cycles exist. They state
that no limit cycles exist if the parameters of the coupled form

structure of Figure 3.8 satisfy
a2 + |ab] +b2 <1 . (4.21)

However, no proof of their assertion is given in [25]. This region
in the parameter plane where no limit cycles exist 1s shown as the
unhatched region in Figure 4.22. The region is symmetric about the a
and b axes. For roundoff quantizers, Barnes and Shinnaka [24] prove
that limit cycles due to quantization will not exlist if the
parameters of the coupled form filter are within the unit square
shown in Figure 4.20. They consider the linear filter of Figure 3.7
described by Equation (4.16). Letting f(*) denote roundoff, the
autonomous system with four roundoff quantizers is defined as

x,(k + 1) = flax, (k)] + £[-bx, (k)]

(4.22)
xz(k +1) = f[bxl(k)] + f{axz(k)] .

If the point (a,b) is within the unit square of Figure 4.20, then
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Figure 4.22. Region where a coupled form filter with four truncation
quantizers and no overflow is free of limit cycles by
Equation 4.21
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|x(k + D], < |x(k) |, (4.23)

and thus no quantization limit cycles exist. The interested reader
is referred to [24] for details of the proof. The extension of their
proof to overflow nonlinearities does not seem obvious at this time,
even though their proof could be extended in the coupled form filter
with two roundoff quantizers.

To apply the constructive algorithm to this filter structure, we
use the extreme matrices determined in Equation (3.41). The regions
in the parameter plane where the digital filter is globally
asymptotically stable by the constructive algorithm for all cases are
shown as the unhatched regions in Figures 4.23 to 4.28. Horizontal
hatching indicates the region where at least one extreme matrix has
an eigenvalue with a magnitude greater than one. Vertical hatching
indicates the rest of the region where we can draw no conclusion
about the stability of the filter. Only the first quadrants of these
regions are shown since they are symmetric about both the a and b
axes.

As indicated in Figure 4.23, the constructive algorithm shows a
region where limit cycles are absent that is larger than the region
where Jackson and Judell [25] indicate the absence of limit cycles
for four truncation quantizers and no overflow nonlinearities.
However, with four roundoff quantizers, the constructive algorithm
shows a region where no limit cycles exist that is smaller than the

region where Barnes and Shinnaka [24] prove the absence of limit
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Figure 4.23. Region where a coupled form filter with four truncation
quantizers and saturation, zeroing or no overflow is
g+8.8. by the constructive algorithm
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Figure 4.24. Region where a coupled form filter with four truncation
quantizers and triangular overflow is g.a.s. by the
constructive algorithm
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Figure 4.25. Region where a coupled form filter with four truncation
quantizers and two's complement overflow is g.a.s. by
the constructive algorithm
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Figure 4.26. Region where a coupled form filter with four roundoff
quantizers and saturation, zeroing or no overflow is
g.a.8. by the constructive algorithm
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Figure 4.27.

Region where a coupled form filter with four roundoff
quantizers and triangular overflow is g.a.s. by the
constructive algorithm
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Figure 4.28. Region where a coupled form filter with four roundoff
quantizers and two's complement overflow is g.a.s. by
the constructive algorithm
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cycles (Figure 4.20). However, our result by the constructive
algorithm shows the region where the filter is globally
asymptotically stable for a class of nonlinearities whereas only a
specific nonlinearity, i.e., roundoff quantization,is considered in
[24]. All of the results obtained by the constructive algorithm for
saturation and two's complement overflow with roundoff or truncation

quantization seem to be new results.
C. Wave Digital Filter

For the specific wave digital filter presented in Chapter III,
we consider the filter implemented with two or three quantizers. The
only known stability results apply to this wave digital filter
implemented with two truncation quantizers. However, we can apply
the Jury-Lee absolute stability criterion (Theorem 4.3) to some of
the other cases to obtain stability results. These stability results
are compared with the stability results obtained by the comstructive

algorithm.

l. Two quantizers

a. Truncation quantizers The only known stability analysis

for wave digital filters has been done by Fettweis and Meerkotter
[26], [27]. They use the concept of a stored pseudoenergy to show
the complete stability of wave digital filters. (The precise

definition of complete stability is given below.) The stored
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pseudoenergy function (called a pseudopower function in [26]), plays
the role of a Lyapunov function in their proof. The nonlinear
arithmetic operations, i.e., overflow and quantization, are assumed
to be applied to the signals bi (1 = 3, 4,%¢¢,n) in Figure 3.10.
These signals correspond to the states of the specific example that
we consider in Figure 3.13.

Before we state the stability result of Fettweis and Meerkotter,
we require their definition of complete stability. Consider a
general wave digital filter such as the one of Figure 3.10.
Arbitrary initial conditions are established in the filter at a
certain initial time, t,+ The inputs to the filter are zero for all
time greater than t,, i.e., al(to + k) = az(to + k) = 0 for all

k » 0. The wave digital filter is said to be completely stable if

the signals bi(to + k), 1 =1, ses, n become permanently zero for a
k> 0. Clearly, complete stability implies that the filter is free
from any limit cycles.

The stability résult of Fettweis and Meerkotter is stated
without proof. The interested reader is referred to [26] and [27]
for details.

Theorem 4.5 The wave digital filter of Figure 3.10 is
completely stable if:

1) the linear n—port network is pseudopassive [12],
2) the linear n-port network is free from any limit cycles

under zero input conditions and
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3) the nonlinearities f1(°) at bi (1 = 3, 4, ¢+, n) satisfy

£.(b,)] € Db
- 2,1 <y (4.24)

£, = |by| implies £,(b;) = b, .

This theorem applies to the specific wave digital filter we
consider, since all linear wave digital filters derived from LC
networks are pseudopassive and globally asymptotically stable [12].
The nonlinearities that will satisfy condition 3) of Theorem 4.5 are
truncation quantizers with any of the overflow characteristics that
we consider. Thus, Theorem 4.5 shows that the specific wave digital
filter that we consider is free of limit cycles for.any parameter
values when truncation quantization with any overflow is applied at
the states of the filter.

To apply the comstructive algorithm to the wave digital filter
structure with two quantizers (Figure 3.14), we use the extreme
matrices determined by Equation (3.56). The constructive algorithm
shows that the filter is globally asymptotically stable for
truncation quantization with any overflow for parameters a and b
satisfying

0 <ac< 100

(4.25)
0<b<100.

We did not try larger values of the parameters a and b because the

run time of the computer program increased significantly as a and b
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are increased in value. However, this region does cover any
reasonable values of these parameters, since the larger values of a
and b mean that the sampling frequency of the filter is fairly high
compared to the cutoff frequency of the filter. Our result shows
that the filter is free of limit cycles for any of the parameters in
the region defined by (4.25) and thus agrees with existing results.

b. Roundoff quantizers There do not seem to be any

existing results for the stability of wave digital filters when
roundoff quantization is used at the states, however, the absolute
stability criterion of Jury and Lee (Theorem 4.3) can be applied to
this case. Applying Theorem 4.3 to the wave digital filter with two

quantizers as shown in Figure 3.14, the matrix G(z) may be written as

A -1
cll z -clzz
-C 2-1 -C Z—l
21 22

G(z) = (4.26)

where ¢;,, ¢;5, ¢y and cgy are determined by Equations (3.43) and

(3.50). The matrix H(z), given by

2 -1 -1
x, ez +z7) ez -y z
H(z) = o ) . (4.27)
“Cy1Z T €y Ky, Cyplz +2z7)

must be positive definite for |z| = 1. For two roundoff quantizers,

k11 = k22 = 2. The region in the parameter plane where the filter is
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globally asymptotically stable is presented as the unhatched region
in Figure 4.29.

To apply the constructive algorithm to the wave digital filter
structure with two quantizers (Figure 3.14), we use the extreme
matrices determined by Equation (3.56). The regions in the parameter
plane where the digital filter is globally asymptotically stable by
the constructive algorithm for all cases are shown in Figures 4,30
and 4.32. Horizontal hatching indicates the region where at least
one extreme matrix has an eigenvalue with a magnitude greater than
one. Although only a portion of the first quadrant is shown, this
horizontally hatched region extends to at least a = b = 100, which is
the most extensive region we examined. Vertical hatching indicates
the rest of the region where we can make no conclusion about the
stability of the filter.

As can be seen from Figure 4.30, the constructive algorithm
yields a less conservative result than the application of Theorem
4.3. All of the results obtained for the roundoff quantization in

conjunction with overflow seem to be new results.

2. Three quantizers

|
To apply the constructive stability algorithm to the wave
digital filter structure with three quantizers (Figure 3.15), we used
the extreme matrices defined in Equation (3.66). For truncation or

roundoff quantization, the constructive algorithm failed to find any
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Figure 4.29. Region where the specific wave filter with two roundoff
quantizers and no overflow is g.a.s. by Theorem 4.3
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e wme Boundary by Theorem 4.3

Figure 4.30. Region where the specific wave filter with two roundoff
quantizers and saturation, zeroing or no overflow is
g.a.8. by the constructive algorithm
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Figure 4.31. Region where the specific wave filter with two roundoff

quantizers and triangular overflow 1s g.a.s. by the
constructive algorithm
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Figure 4.32. Region where the specific wave filter with two roundof £
quantizers and two's complement overflow is geae8. by
the constructive algorithm
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region in the parameter plane where the filter is globally
asymptotically stable. Although no details are given, application of
the Jury-Lee criterion (Theofem 4.,3) also failed to find any region
in the parameter plane for a > 0 and b > 0 where the filter is

globally asymptotically stable.
D. Lattice Digital Filter

For the second order lattice digital filter, we consider the
filter implemented with two or three quantizers. The only known
stability results apply to the lattice filter with two truncation
quantizers. However, application of the Jury-Lee critierion (Theorem
4,3) does obtain some stgbility results that we use for comparison.
These existing results are then compared with the stability results

obtained by the constructive algorithm.

l. Two quantizers

a. Truncation quantizers Gray [28) uses energy analogies to

show the absence of limit cycles in nonlinear lattice digital
filters. The approach is similar to that of Fettweis and Meerkotter
[26]. Gray shows that the nonlinear lattice digital filter will be
free of limit cycles whenever the linear filter is globally
asymptotically stable if truncation quantization and overflow
nonlinearities are applied at each section output (i.e., at A, and

By4+1 of Figure 3.15(b)). This result applies to any of the overflow
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characteristics that we are considering (Figure 3.2). When applied
to a second order lattice filter, this result shows the absence of
limit cycles even if truncation quantization and overfiow are applied
only at the states of Figure 3.17.

To apply the constructive algorithm to the stability analysis of
the lattice structure with two quantizers, we use the extreme
matrices determined by Equation (3.73). With truncation quantization
and any overflow nonlinearity, the constructive algorithm shows that
this nonlinear lattice filter is globally asymptotically stable in

the region of the kl-k2 parameter plane determined by

[k, | <1
(4.28)
lk,| < 1.
This result agrees with the result of Gray [28].
b. Roundoff quantizers There do not appear to be any

stability results for the second order lattice digital filter
implemented with two roundoff quantizets (Figure 3.17). Although no
detaills are given here, application of the Jury-Lee criterion yields
no region in the parameter plane where this filter is globally
asymptotically stable. To apply the constructive algorithm to the
lattice structure with two roundoff quantizers, we use the extreme
matrices determined by Equation (3.73). The regions in the

kl-k2 parameter plane where this filter is globally asymptotically

stable by the constructive algorithm are shown as the unhatched
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Figure 4.33. Region where the lattice filter with two roundoff
quantizers and saturation, zeroing or no overflow is
g+a.8. by the constructive algorithm
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Figure 4.34. Region where the lattice filter with two roundoff

quantizers and triangular overflow is g.a.s. by the
constructive algorithm
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Figure 4.35. Region where the lattice filter with two roundoff
quantizers and two's complement overflow 1s g.a.s. by
the constructive algorithm
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regions in Figures 4.33 to 4.35. The horizontally hatched region
indicates the region where at least one extreme matrix has an
eigenvalue with a magnitude that is greater than one. Vertical
hatching indicates the rest of the region where the comstructive
algorithm does not show global asymptotic stability. These regions

are symmetric about the k, axis. These results appear to be new.

2. Three quantizers

There do not seem to be any existing stability results for the
lattice digital filter with three quantizers (Figure 3.18). However,
the absolute stability criterion of Jury and Lee (Theorem 4.3) can be
applied to this structure without the overflow nonlinearities.
Applying Theorem 4.3 to the lattice digital filter with three

quantizers as shown in Figure 3.18, the matrix G(z) may be written as

0 k k
G(z) = 0 k2 klz_ . (4.29)

-2 -
-kzz kzz k2z

The matrix H(z), given by

2
£ k k, - k,2z
kll 1 1 2
H(z) = L3 % + kl(z + z-l) l;clzm1 + kzzz
22
_ -1 -2 2 2 -2
kl kzz klz + kzz E53 + kz(z +z ")
b

(4.;0)

must be positive definite for |z| = 1. For three truncation
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quantizers, kll = k22 = k33 = 1, The region in the parameter plane
where the filter is globally asymptotically stable is shown as the
unhatched region in Figure 4.36. For three roundoff quantizers,

k,, =k

= k.., = 2, The region where the filter is globally

11 22 33
asymptotically stable for this case is presented as the unhatched
region in Figure 4.37. These regions are symmetric about the k,
axis.

To apply the constructive algorithm to the lattice structure

with three quantizers (Figure 3.18), we use the extreme matrices

determined in Equation (3.81). The regions in the parameter plane

where the filter is globally asymptotically stable for all cases are

presented in Figures 4.38 to 4.45. Only half of these regions are
shown since they are symmetric about the ko, axis. The horizontally
hatched regions are those regions where at least one extreme matrix
has an eigenvalue whose magnitude is greater than one. Vertical
hatching indicates the rest of the region where the constructive
algorithm can draw no conclusion as to the stability of the filter.

As can be seen in Figures 4.38 and 4.42, the constructive

algorithm obtains a less conservative result than the application of

the Jury-Lee criterion. All of the stability results obtained by the

constructive algorithm for the overflow nonlinearities seem to be new

results.
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Figure 4.36. Region where the lattice filter with three truncation
quantizers and no overflow is g.a.s. by Theorem 4.3
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Figure 4.37. Region where the lattice filter with three roundoff
quantizers and no overflow is g.a.s. by Theorem 4.3
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~==== «— Boundary by Theorem 4.3

Figure 4.38. Reglon where the lattice filter with three truncation
quantizers and no overflow is g.a.s. by the
constructive algorithm

www.manaraa.com



129

Figure 4.39. Region where the lattice filter with three truncation

quantizers and saturation or zeroing overflow is g.a.s.

by the constructive algorithm
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Figure 4.40. Region where the lattice filter with three truncation
quantizers and triangular overflow is g.a.s. by the
constructive algorithm

www.manaraa.com



131

Figure 4.41. Reglon where the lattice filter with three truncation
quantizers and two's complement overflow is g.a.s. by
the constructive algorithm
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Figure 4.42. Region where the lattice filter with three roundoff
quantizers and no overflow is g.a.s. by the
constructive algorithm
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Figure 4.43. Reglon where the lattice filter with three roundoff
quantizers and saturation or zeroing overflow is g.a.s.
by the comstructive algorithm
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Figure 4.44., Region where the lattice filter with three roundoff

quantizers and triangular overflow is g.a.s. by the
constructive algorithm
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Figure 4.45. Region where the lattice filter with three roundoff
quantizers and two's complement overflow is g.a.s. by
the constructive algorithm
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V. CONCLUSION

The fixed-point digital filter structures that we have
considéred demonstrate that the Brayton-Tong constructive algorithm
is a powerful tool in the stability analysis of fixed-point digital
filters. We have obtained new results for many of the structures
which we have analyzed. We have also improved upon many existing
stability results. Our results are more conservative only for a few
cases. In these cases, the existing results consider a specific
nonlinearity, whereas the constructive algorithm obtains a stability
result that applies to a class of nonlinearities.

Following is a summary of the stability results obtained by the
constructive algorithm for the various digital filter structures that
we studied. For comparison, the references for the existing results

are also listed.

New stability results:
1) Direct form, one quantizer with overflow
2) Direct form, two quantizers with overflow
3) Coupled form, four quantizers with overflow
.4) Wave filter, two roundoff quantizers with overflow
5) Lattice filter, two roundoff quantizers with or without
overflow

6) Lattice filter, three quantizers with overflow
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Improvement upon existing results:

1) Direct form, one roundoff quantizer without overflow

2)
3)

4)

5)

[19]

Direct form, two quantizers without overflow [20]
Coupled form, four truncation quantizers without
overflow [25]

Wave filter, two roundoff quantizers without overflow
[20]

Lattice filter, three quantizers without overflow [20]

Same as existing results:

1))

2)

3)

4)
5)

Direct form, one truncation quantizer without overflow
[16]

Coupled form, two truncation quantizers with or without
overflow [22]

Wave filter, two truncation quantizers with or without
overflow [26]

Wave filter, three quantizers without overflow [20]
Lattice filter, two truncation quantizers with or

without overflow [28]

More conservative than existing results:

1) Direct form, saturation or triangular overflow only [18]

2) Coupled form, two roundoff quantizers with or without

overflow [24]
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3) Coupled form, four roundoff quantizers without overflow

[24]

The Brayton-Tong constructive stability algorithm is powerful
since it can be applied to a wide range of fixed-point digital filter
structures. While existing methods of stability analysis are
generally different for each particular structure, the constructive
algorithm allows u; to use one method to study the stability of
nonlinear digital filter structures. This method can be cumbersome
for cbmplicated structures, but it is straightforward. We feel that
this method should become a tool to be used in the evaluation of any
proposed new filter structure.

We have only examined those digital filter structures that have
received much attention in the literature. There are many other
digital filter structures that are slight modifications of the
structures that we have considered (e.g., modified coupled form and
one multiplier lattiée) that could also be studied.

We have only considered second order digital filters in this
dissertation. The constructive method can be applied to higher order
filters either directly or by considering the higher order filter as
an interconnection of lower order structures (see, e.g., [29],

[30]). The method could also be extended to the stability analysis

of a feedback control system using a digital compensator.,
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IX. APPENDIX A: DESCRIPTION OF COMPUTER PROGRAMS

In this appendix we describe the computer programs that we used
in our investigation of digital filter stability by the construgtive
algorithm of Brayton and Tong. In Section A, we give a short
description of the subroutine that implements the constructive
algorithm. In Section B, we describe a program, BGRID, that uses
this constructive algorithm to find the region in the parameter plane
where a second order filter is globally asymptotically stable. BGRID
finds this region by checking individual points in the parameter
plane. In Section C, we present a description of a program, BORDR,
that finds the boundary of this region where a digital filter is
globally asympfotically stable.

In a normal sequence, the program BGRID is used to get a general
idea of the form of the region where the filter is globally
asymptotically stable. Then, the program BORDR is used to list the
points along the boundary of this region. These points are then used
to draw the boundaries of the region. This is the sequence that we
followed in producing the figures in Chapter IV that depict the
regions where the various digital filters are globally asymptotically
stable.

All of these programs are written in FORTRAN IV for use on an HP
1000 Model 40 minicomputer with the RTE-IVB operating system in the
Electrical Engineering Department at Iowa State University.

Consequently, there are some differences in these programs from the
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standard FORTRAN IV programming language. These differences have
been kept to a minimum and they are noted in each of the respective
program descriptions.

Source listings for all of these computer programs are in
Appendix B. For each of the subroutines in the listings, there is a
short description of the function of the subroutine along with a
description of the input variables and output variables. In
addition, for each main program and major subroutine, there is also a
section labelled "PSEUDO-CODE" that contains a structured English-
like description of the operation of the subroutine or program.

Each program and subroutine listed in Appendix B has been
tested. The operation of each program or subroutine was
independently tested by invoking the program or subroutine with
appropriate test inputs. These test inputs were chosen to exercise
all of the branches of the routine and to check the possible values
of the variables. The results of each routine were then compared
with the expected results. In addition, using program BGRID, the
operation of the comstructive algorithm was checked against the
example in the Section VI of Brayton and Tong [1]. We obtained the
same region in the parameter plane where this set of matrices was

stable as reported in [1].
A. Constructive Algorithm Subroutine

The Brayton-Tong constructive algorithm is implemented as a

subroutine, BRAYT, so that it can be used by more than one computer
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program. A complete description of the constructive algorithm is
given in [1] and [2]. Our implementation of the conmstructive
algorithm follows the algorithm presented in [2]. Since the major
part of the algorithm handles the formation of the new vertex set
E(Wk) from the vertex set E(wk-l)’ we describe this part of the
algorithm. In the following description, M;, i = 1, e¢e, m, i8 an
element of the set of matrices A. The set V is initially E(Wo) and
is set to E(Wk) n E(Wk_m) for k>m, where k is the number of the
convex hull. Steps 1) - 17) are the major part of the algorithm.
More detail about the algorithm is found in Section A of Appendix B.
Formation of the new vertex set E(Wk):
1) Set E(Wk) - E(Wk_l)
2) Set done-flag to "no”

3) Do for each vertex in E(W, _,) while done is "no”

4) If vertex £ Vor k< m

5) Set NEWPT = vertex

6) Do while new points are being added to E(Wk)
7) NEWPT = M, (NEWET)

8) If NEWPT ¢ «[W,]

9) Add NEWPT to E(Wk), eliminating all

vertices contained within K[Wk]

10) If E(Wo) n E(Wk) =6
11) Set done-flag to "yes"
12) Set status to “"unstable”

End do while
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End of processing one vertex in E(wk-l)

13) If k > m and done is "no"”

14) If E(W,) = E(wk -’
15) Set done-flag to "yes"
16) Set status to "stable"

17) Else set V = E(Wk) n E(Wk_m)
The constructive algorithm as we have implemented it is not

exactly the same as the form of the algorithm given in [2] but the

differences are relatively minor and do not change the outcome of the

algorithm. The first difference 1s that we do not use the improved
instability criterion given in [2]. Also, whenever a new vertex is
added to a convex hull, we eliminate all of those vertices that are
now contained within the new convex hull. This second difference
greatly simplifies the algorithm description, since much of the
algorithm description in [2] determines if a given vertex from the
previous convex hull needs to be eliminated from the current convex
hull,

The only known differences from standard FORTRAN IV are
contained in the first two lines of the source listing in Section A
of Appendix B, The first line is the HP~1000 compiler directive to

use four-word double precision numbers and to produce a listing of

the source program. The second line places the common data area DAT

in the extended memory area (EMA) since the computer that we used has

a limited amount of main memory.

The routines that implement the constructive algorithm can be
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modified for use with higher order systems. In addition to obvious
changes in array sizes, the subroutines AINIT, ADDVT, CKVRT, SANGL
and EIGEN will need modification, since they only apply to second

order systems,
B. Program to Find the Region of Stability for a Digital Filter

The computer program BGRID, described in this section, uses the
constructive algorithm to find the region in the parameter plane
where the equilibrium point x = 0 of a second order digital filter is
stable or globally asymptotically stable. BGRID finds this region of
stability by checking the stability of the filter at individual
points within a given two-dimensional region. The user specifies
these points where the filter stability is checked as a grid of
points within a desired region. This region may be a rectangle, a
point or a default region dependent on the particular digital
filter. The default region is the region in the parameter plane in
which we are most interested in checking the stability of the
filter. The default region is a portion of the region where the
linear digital filter is globally asymptotically stable and is chosen
because of symmetry considerations. For example, the default region
for a direct form filter is the right half of the triangular region
in Figure 3.4 since the regions where the nonlinear filter is
globally asymptotically stable are symmetric about the b-axis.

BGRID starts by querying the user for the data needed to run the

program. The user is first asked for the type of quantization and
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overflow nonlinearities within the digital filter. Then the user is
asked for the type of region where the filter stability is checked.
If the user selects the default region (dependent on filter
structure) then the grid increment is also entered. The grid
increment is the change in the x and/or y coordinate from one point
to another in the region. The grid of points is uniform. The user
may also select the reflection of the default region which is the
default region reflected through the y axis. If the user wants to
check the stability of the filter in a rectangular region, the user
enters the horizontal and vertical limits of the rectangle as well as
the horizontal and vertical grid increment. If the user desires to
check the stability of the filter at a single point in the parameter
plane, then the coordinates of that point are entered. In this case,
the user may also request a "trace” of the constructive algorithm.
Regardless of the type of region where the filter stability is
checked, the user is asked for the value of pe The value of p must
be greater than or equal to one. If p 18 greater than one, then
BGRID will find the region where the filter is globally
asymptotically stable,

For each of the points in the region, the set of extreme
matrices 1is generated and then used by the constructive algorithm to
determine the stability "status” of the set of extreme matrices for
the filter at that point. The constructive algorithm indicates that
the set of extreme matrices is stable, unstable or indeterminant.

The set of extreme matrices is indeterminant if the constructive
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algorithm terminated abnormally due to a condition other than the
stable or unstable stopping criteria of the constructive algorithm.
The conditions that cause the constructive algorithm to terminate
abnormally are given in the source listing for the constructive
algorithm subroutines. The program then prints the stability
"status” of the set of matrices at each point in the grid. The
values of this stability "status” and their corresponding indication

are:

0 - get 1s stable
1 - sget 1s unstable
2,3,or 5 - stability of set is indeteruinate

4 =~ at least one matrix in the set of extreme
matrices has one eigenvalue with a
magnitude greater than one (set is
unstable).'
We can conclude that the digital filter is globally asymptotically
stable at that point only when the set of extreme matrices is
globally asymptotically stable. If the set of extreme matrices is
not stable, then we can draw no conclusions about the stability of
the filter.
BGRID uses a group of subroutines that are not listed with the
program. This group of subroutines is unique to each digital filter

structure. Included in this group are the subroutines that identify

the program output for a particular filter structure (GETLB and
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DESCR), define the default region (DFAUL and GTEND) and generate the
gset of extreme matrices (GTMAT). For a particular filter structure,
these subroutines are compiled separately and then are linked with
the main program, BGRID, and the cbnstructive algorithm subroutine
BRAYT, to form a program that finds the region of stability for that
particular filter. The group of subroutines for each of the digital
filter structures that we studied is listed in Section D of Appendix
B. If one wishes to study another digital filter structure, then
these subroutines will need to be written for that particular
structure.

Example outputs of BGRID are given in Figures 9.1 and 9.2. The
digital filter structure is a direct form with one quantizer (Figure
3.6). In this case, the program BGRID was formed by .linking the
unique subroutines associated with the direct form structure with one
quantizer (Appendix B, Subsection D1) and the comstructive algoritﬁm
subroutine (Appendix B, Section A) with the BGRID program (Appendix
B, Section B). The points where the constructive algorithm finds the
set of extreme matrices stable are points where the filter is
globally asymptotically stable since p 1s chosen to be 1.0000001.
For both figures, the user selected a roundoff quantizer with
triangular overflow. In Figure 9.1, the user specified the default
region with a grid increment of 0O.l. The default region for the
direct form filter is the right half of the triangular region of

Figure 3.4, In Figure 9.2, the user specified a rectangular region
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ROUNDOFF QUANTIZER
TRIANGULAR OVERFLOW

DEFAULT REGION.

RHO IS

1.000
.900
.800
.700
.600
.500
.400
.300
.200
.100
.000
.100
.200
.300
.400
.500
.600
.700
.800
.900
-1.000

Figure 9.1.

1.0000001

4

44

444

4444

44444

444444

0444444

00444444

000444444
0000444444
00000444444
000000444444
0000000444444
00000001444444
000000111444444
4444444444444444
4444464444644444544
444444444406444404
4444L44044404044444404
444444L044440446444044
444444444444404444644

Example output of BGRID: default region

BRAYA

GRID INCREMENT IS
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BRAYTON-TONG STABILITY BRAYA
CANONICAL FORM DIGITAL FILTER WITH ONE QUANTIZER

ROUNDOFF QUANTIZER
TRIANGULAR OVERFLOW

HOR START, END, AND INC IS .5000 1.0001 .0200
VER START, END, AND INC IS -.2000 -.5001 -.0200

RHO IS 1.0000001

-.200 000000000044444444444444044
-.220 00000000000444444444444044
.240 00000000000144444444444444
-.260 00000000000114444444444444
.280 00000000001111444444444444
.300 00000000001111144444444444
.320 00000000011111114444444444
.340 00000000111111111444444444
.360 00000001111111111144444444 —_—
.380 00000011111111111114444444
.400 00000111111111111111444444
.420 00111111111111111111144444
440 11111111111111111111114444
460 11111111111111111111111444
480 11111111111111111111111144
=.500 4444444444440440400400400444

Figufe 9.2, Example output of BGRID: rectangular region
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in which to check the global asymptotic stability of the filter. The
horizontal limits are 0.5 and 1.0 with a horizontal increment of
0.02. The vertical limits are -0.2 and -0.5 with a vertical
increment of 0.02., We do not_give example outputs of BGRID when the
filter stability is checked at a single point or when a trace of the
constructive algorithm is requested.

BGRID can be run interactively where the user answers questions
from a terminal, or it can be run in a batch environment where the
responses to the questions are taken from a data file. In addition,
BGRID can build the response data file to be used in a batch ‘
environment. However, this feature is dependent on the computer on
which BGRID is run. If BGRID is to be run on a different computer,
the part of the program that sets up the input and output device
numbers will need to be modified. The first three lines of the
program source listing (Appendix B, Section B) are also deviations
from the standard FORTRAN IV lanéuage. The first line 1is the HP-1000
Fortran compiler directive. The second line places the common area
DAT into the extended memory area (EMA). This line is required by
the constructive algorithm subroutine BRAYT. The third line
identifies the name of the program.

The run times of BGRID depended mainly on the number of extreme
matrices and the number of points in the grid. All of the run times
given here are for the default region for that filter with a grid

increment of 0.l units. Some example average run times are:
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Direct form, one quantizer (2 matrices) - 25 gec
Direct form, two quantizers (4 matrices) - 40 gec
Coupled form, two quantizers (4 matrices) =~ 12 sec

Coupled form, four quantizers (16 matrices) - 60 sec
C. Program to Find the Boundary of a Region

The computer program, BORDR, described in this section, finds
points on the boundary of the region in the parameter plane where a
digital filter is globally asymptotically stable or the boundary of
the region in the parameter plane where all of the extreme matrices
of the filter have eigenvalues on or inside the unit circle. BORDR
only works for two-dimensional regions. The output of BORDR is a
1ist of points along the boundary of the desired regionm.
Consequently, these points are used to draw the boundaries of the
region.

The constructive algorithm only gives an indication of the
stability of a system. There is no indication of how close a
particular system is to the boundary between the stable region and
the region where the stability of the system is uncertain by the
constructive algorithm. Therefore, BORDR uses a binary search
technique to find the boundary between the two regions to a desired
accuracy.

BORDR uses two axes to find the boundary of a two—dimensional

region. Along the search axis, a binary search is used between an
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inner search point and an outer search point in order to find the
boundary point to a desired accuracy. The inner search point is
inside the region and the outer search point is outside the region.
The search axis is parallel to either the x-axis or the y-axis. The
other axis used by BORDR, the increment axis, is perpendicular to the
search axis. In the direction of the increment axis, the next
boundary point is predicted using a given search increment, the
boundary gradient and the previous boundary point. Using the
predicted boundary point, the inner and outer search points are
predicted. The next boundary point is then found by searching
between the inner and outer search points. If both predicted search
points happen to be outside or inside the region, then the search
axis is changed to the previous increment axis and the program tries
to find the boundary point along this axis. If BORDR cannot find the
next boundary point along the new axis, the program stops. BORDR
terminates normally if it returns to the initial boundary point or if
it receives some indication that the end of the desired boundary has
been reached. In order that the search algorithm starts properly, an
initial search axis and search points must be specified. The initial
inner search point must be inside the region and the initial outer
search point must be outside the region.

To illustrate the operation of the two-dimensional search
algorithm of BORDR, suppose that the boundary of the region is the

triangle in Figure 9.3. An initial search axis could be the y-
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(=2, -1 -1 2, -1

Figure 9.3, Triangular region used to illustrate the
operation of BORDR
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axis. The initial inner search point could be (0.0, 0.5) and the
initial outer search point could be (0.0, 1.5). Let the search
increment be 0.1, The initial boundary point is determined to be
(0.0, 1.0). Since there is no previous boundary point, BORDR guesses
the next boundary point to be (0.1, 1.0). The algorithm estimates
the inner search point to be (0.1, 0.8) and the outer search point to
be (0.1, 1.2). The next boundary point is found to be (0.1, 0.9).
BORDR proceeds to "walk" down the boundary until it comes to a
corner. At the corner, the search axis is changed and BORDR proceeds
to "walk" along the boundary again.

BORDR also uses a group of subroutines that is not listed with
the program. This group of subroutines is unique to each digital
filter structure. Included in this group are the subroutines that
print the first three lines of the output (LINIT), determine if the
end of the desired boundary has been reached (DNCHK) and generate the
set of extreme matrices (GTMAT). For a particular filter structure,
these subroutines are compiled separately and then are linked with
the main program and the constructive algorithm subroutines to form a
program that finds the boundary of the desired region for that
particular filter. The group of subroutines for each of the digital
filter structures that we studied is listed in Section D of Appendix
B. If one wishes to study another digital filter structure, then
these subroutines will need to be written for that particular

structure.
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An example output of this program is given in Figure 9.4. 1In
this case, the program BORDR was formed by linking the unique
subroutines associated with the direct form structure with one
quantizer (Appendix B, Subsection D1) and the constructive algorithm
subroutine (Appendix B, Section A) with the BORDR program (Appendix
B, Section C). The first line identifies the boundary data by
describing the filter structure and by giving the values of the
program input parameters. The first parameter is the type of
quantizer, the second is the type of overflow nonlinearity and the
third is the type of boundary. The specific values of these
parameters are explained in the program source listing (Appendix B,
Section C). For the example in Figure 9.4, the boundary points are
for the region where a direct form digital filter with one roundoff
quantizer and two's complement overflow (Figure 3.6) is globally
asymptotically stable. The second line in Figure 9.4 indicates the
minimum and maximum values of the boundary points. The first two
values are the minimum and maximum horizontal values, respectively.
The last two values are the minimum and max{imum vértical values,
respectively. The third line of the program output is an indication
of the symmetry of the boundary so that all of the boundary points do
not have to be listed. Possible values of the symmetry indication

and their meanings are:
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DIRECT FORM, ONE QUANTIZER 1 2 1

1

-1.0000 1.0000
.50098 0.00000
.52098 -.02000
.54098 =.04000
.56098 -.06000
.58098 -.08000
.60098 -.10000
.62098 -.12000
.64098 -.14000
.66098 -.,16000
.19598  -.50000
.17598  -.50000
.15598  -.50000
.13598 -.50000
.11598 -.50000
.09598 -.50000
.07598 -.50000
.05598 -.50000
.03598 -.50000
.01598 -,50000

0.00000 0.00000
Figure 9.4,

-.5000 .5000

Example output of BORDR
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0 - no symmetry

1 -~ symmetric about y-axis

2 - gymmetric about x—axis

3 - symmetric aﬂout x-axis and y-axis.
For the example in Figure 9.4, the boundary is syﬁmetric about the
y-axis. Succeeding lines contain the x~ and y~coordinates,
respectively of the boundary points. Not all of the boundary points
are shown in Figure 9.4. A boundary point of (0,0) signifies the end
of the boundary points. These points were used to draw Figure 9.5.
The boundary in Figure 9.5 is a part of Figure 4.10.

The input parameters that are needed by BORDR are passed into
the program by an HP-1000 operating system utility. These parameters
are the output device number, the type of quantization nonlinearity,
the type of overflow nonlinearity and the type of boundary. The
method of setting these input parameters will need to be modified if
BORDR is run on a different computer. The first three lines of the
program source listing (Appendix B, Section C) are also deviations
from the standard FORTRAN IV language. The first line is the HP-1000
Fortran compiler directive. The second line places the common area
DAT into the extended memory area (EMA). This line 1s required by
the constructive algorithm subroutine BRAYT. The third line
identifies the name of the program.

The run times of BORDR depended mainly on the number of extreme

matrices. All of the run times given here are for an increment
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Figure 9.5. Boundary drawn from example output of BORDR
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between points of 0.02 units and a search accuracy of 0.005 units.
Some example average times are:

Direct form, one quantizer (2 matrices) - 8 min

. Direct form, two quantizers (4 matrices) - 150 min

Lattice filter, three quantizers (16 matrices) - 300 min
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X. APPENDIX B: LISTING OF COMPUTER PROGRAMS

A. Constructive Algorithm Subroutine: BRAYT

Directory

Page
BRAYT 166
GENPT 174
VRTEL 176
EQVRT 177
INVRT 179
FRMIN 181
PDIFF 183
AINIT : 184
MPOWR 185
MMULT 186
ADDVT 187
CKVRT 190
SANGL 192
ELIMN 194
EIGEN ' 197
PVRT 199

ACCEL 200
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FING,Y,L
$EMA (DAT)
Fededededeivicivivivioivioiiviodedoiefdoloielododeioiodedodoiodedodoiodededoiodedoiotoidodedodeioiodoloiciololekdods

%
I

BRAYTON - TONG CONSTRUCTIVE ALGORITHM

THIS FILE CONTAINS THE BRAYTON-TONG ALGORITHM
SUBROUTINES THAT ARE USED TO FIND THE REGIONS OF
STABILITY FOR SECOND ORDER DIGITAL FILTERS.

Tiiriiiided
T¥iiiieiag

dedriededelededededdedodoieiodrivirinicivivioinieloinioidvideioioicidchiioioieloideieirickdolofdoioictolode
Fededdelileidededdoiiohloddniciiclivioiohdeioiokdoicioichiioiiioinichidok foleiciohdeiededelondoicks

%ok

Jede

¥*  FILE &BSUP

L

Yok
Fededededededededriniedririededrdedeiedede e dededeie heiredededofoiedede ke ededeiedelede ek e dedede e e deddede e
ek doe
ke BRAYT ke
Jede Jede
Fededededededededeiciedodvivinkdvicieioiedeledeiedehieiedeiniioioieieiioideleioidoiieiedetokdcie ok oleiedoick

This Subroutine implements the Brayton - Tong
algorithm to find if a given set of extreme matrices

is stable

INPUTS: EMAT - Difference eqn extreme matrices
EDIM - Dimension of system
NUMEXT - Number of extreme matrices

WZERO =~ Initial vertex set

NZERO No. of vertices in initial vertex set

TRACE - Set to nonzero value if want a trace
of results

OUTPUTS: WSTAR

Convex hull W* if stable system,
otherwise it is the last convex
hull generated

Number of vertices in W¥*

Stable/Unstable status of set of
extreme matrices

NSTAR
SFLAG

-SSR RS RS SRR EEEEE:

BRAYT
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BRAYT

0 - stable

1 - unstable

2 - indeterminate (algorithm
stopped because too many
times through loop)

3 - indeterminate (algorithm
stopped because too many
vertices in hull)

4 - one extreme matrix has eigen-
value outside unit circle

5 - indeterminate (algorithm
stopped because too many
times in accelerated procedure

MXVRT - Maximum number of vertices in any
hull during course of algorithm.

PSEUDO-CODE:

If eigenvalues of extreme matrices are not outside
unit circle
Initialize previous-vertex-sets to initial-vertex-
set
Initialize next-vertex-set to initial-vertex-set
Initialize intersection-set to initial-vertex-set
Initialize vertex-angle array
Initialize array of 'angles'
Set Kto 1l
Set IEXT to 1
Set DONE to 'no'
Set stable-flag to 'stable'

Do while not done
Do for each vertex in W(k-1) while stable-flag is
stable
NEWPT = vertex of W(k-1)
If K <= number-of-extreme matrices or NEWPT is
not in intersection-set
Set New-point-flag to 'yes'
Set number-of-iterations to zero
Do while new points are being added and set
is stable
Increment number-of-iterations
If number-of-iterations > 10
Do alternate accelerated procedure
Else _
Generate new vertex point, adding it to
hull if possible.
End of processing one vertex in W(k-1)
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BRAYT

I1f stable-flag is not 'stable'
Set DONE to 'yes'
Else
If K > number-of-extreme-matrices
If W(k) = W(k-m) (m is num-of-ext-matrices)
Set DONE to 'yes'
Set stable-flag to 'stable'
Else
Set intersection-set to intersection of
W(k) and W(k-m)

Adjust array of previous convex hulls

IEXT = IEXT + 1 mod m
K=K+1

If too many convex hulls generated
Set DONE to 'yes'
Set stable-flag to 'indeterminate'

End of do while

LOCAL VARIABLES:

WSTAR -~ Contains next convex hull as it is formed.

ANG - Array of angles for WSTAR vertices, used to
speed up adding a new vertex to set

WPREV - Previous convex hulls. In EMA storage
WPREV(m,n,1) contains W(k-1)
WPREV(m,n,2) contains W(k-2) etc

PREV - Contains W(k-m) so that EMA accesses do not
have to be done by subordinate routines
'EQVRT' and 'FRMIN'

NPREV ~ Array containing no. of vertices in WPREV

\) - Intersection set. Contains the intersection
of W(k) and W(k-m). Any vertices in this
set will not give any more new points for
Wk), k >m

NV ~ Number of vertices in V

K - Convex hull number

NUMEXT - Number of extreme matrices

IEXT - Current extreme matrix being used to
generate W(k)

DONE - Signals when it is time to exit loop
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BRAYT
ke ITER - Number of iterations through loop that gen-
wke erates new points for vertex set. If a
Wk certain threshold is reached, the
L accelerated procedure is used.
wok
*% J - Number of vertices in W(k-1)
w¥e M,N - Matrix index variables
ke MAXI - Maximum number of iterations allowed
#i through big loop.

*k
ke

SUBROUTINE BRAYT(EMAT, EDIM, NUMEXT, WZERO, NZERO,
& WSTAR, NSATR, SFLAG, MXVRT, TRACE)

wk
St
DOUBLE PRECISION WPREV
COMMON/DAT/ WPREV(2,256,16)
de
sk
DOUBLE PRECISION EMAT(3,3,16), WZER0(2,10),
& PREV(2, 256) V(2,256), NEWPT(3),
& WSTAR(2,256), ANG(256)
INTEGER EDIM, NZERO, NSTAR, NPREV(16), TRACE
INTEGER SFLAG I, NUMEXT IEXT, ITER, DONE
INTEGER NV, K, J, M, N, II, 1J, IK, MAXI MXVRT
W
% The following are function subprograms
INTEGER EQVRT, INVRT, CKVRT, VRTEL
)
W
Fke Calculate maximum number of iterations allowed
MAXI = NUMEXT * 80
dete
sk
o

Tracing function

IF (TRACE.EQ.0) GOTO 110
WRITE(6,22)

CALL PVRT(WZERO, NZERO, EDIM)

DO 105 M = 1, NUMEXT

WRITE(6,2) M

DO 102 I=1,EDIM

102 WRITE(6,6) (EMAT(I,J,M),J=1,EDIM)
105 CONTINUE

Fk
Wk Check to make sure eigenvalues are not outside unit
R circle

110  CALL EIGEN(EMAT, EDIM, NUMEXT, SFLAG, TRACE)
IF (SFLAG.NE.0) GOTO 510

www.manaraa.com



%k

115

120

125

ii

13511

170

Init WPREV, WSTAR, and V to WZERO
DO 120 J=1,NZERO

DO 120 I=1,EDIM

DO 115 M=1,NUMEXT
WPREV(I,J,M) = WZERO(I,J)
WSTAR(I,J) = WZERO(I,J)
V(I,J) = WZERO(I,J)

DO 125 M=1, NUMEXT
NPREV(M) = NZERO

NSTAR = NZERO

NV = NZERO

Other initialization

CALL AINIT(WSTAR, NSTAR, EDIM, ANG)
K=1

IEXT = 1

DONE = 0

SFLAG = 0

Do while not done
IF (DONE.NE.O) GOTO 500

Tracing function

IF (TRACE.EQ.0) GOTO 135
WRITE(6,4) K, IEXT
WRITE(6,8)

CALL PVRT(V, NV, EDIM)
CONTINUE

Do for each vertex in W(k-1) while stable-flag is
"stable"

J=1

IF ((J.GT.NPREV(I)).OR.(SFLAG.NE.O)) GOTO 300

Set NEWPT to point J of W(k-1)
DO 150 M = 1, EDIM
NEWPT(M) = WPREV(M,J,1)

If K <= NUMEXT or point J of W(k-1) is not in V
IF ((K.GT.NUMEXT).AND.

& (VRTEL(NEWPT,EDIM,V,NV) .EQ.1)) GOTO 210

Initialization before next loop
NEWFLG = 1
ITER = 0

BRAYT
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IF (TRACE.NE.O) WRITE(6,18) (NEWPT(M), M=1,EDIM)

Do while new points are being added and system
stable
IF ((NEWFLG.EQ.0).OR. (SFLAG.NE.0)) GOTO 210
ITER = ITER + 1
Check if need to do accelerated procedure
IF (ITER.LE.10) GOTO 170
CALL ACCEL(EMAT(1,1,IEXT), EDIM, WSTAR,
NSTAR, ANG, WZERO, NZERO, NEWPT, TRACE,
MXVRT, SFLAG)
NEWFLG = 0
GOTO 200

Regular procedure

CALL GENPT(EMAT(1,1,IEXT), EDIM, WSTAR, NSTAR,
ANG, WZERO, NZERO, NEWPT, TRACE, MXVRT,
SFLAG, NEWFLG)

GOTO 160

Increment to next point of W(k-1)
J=J+1

Tracing function

IF (TRACE.EQ.0) GOTO 220
WRITE(6,24)

CALL PVRT(WSTAR, NSTAR, EDIM)

GOTO 140

End of processing vertices in W(k-1)
CONTINUE

If stable-flag <> "stable" then set DONE so that we
exit
IF (SFLAG.EQ.0) GOTO 310

DONE = 1

GOTO 400

Else if K > number~of-extreme-matrices, check for
stability and get intersection-set
IF (K.LE.NUMEXT) GOTO 340
M = NUMEXT

Set PREV array to k-m hull

BRAYT

www.manaraa.com



172

BRAYT
DO 320 IJ = 1, NPREV(M)
DO 320 II = 1, EDIM
320 PREV(II,IJ) = WPREV(II, 1J, M)
ok
% If current convex hull is same as k-m hull,
R exit stable
IF (EQVRT(PREV(1,1),NPREV(M),WSTAR,NSTAR,EDIM)
& .NE.1) GOTO 330
DONE = 1
SFLAG = 0
GOTO 340
ok
ke Form intersection-set
330 CALL FRMIN(WSTAR, NSTAR, PREV(1,1), NPREV(M),
& EDIM, V, NV)
o
ek
340 CONTINUE
Fohe
ke Adjust WPREV array backwards
IF (NUMEXT.LT.2) GOTO 380
DO 370 IK = NUMEXT ,2, -1
NPREV(IK) = NPREV(IK-1)
DO 360 IJ = 1, NPREV(IK)
DO 360 II = 1, EDIM
360 WPREV(II,I1J,IK) = WPREV(II,1J,IK-1)
370 CONTINUE
ok
i Put WSTAR in WPREV( , ,1)
380 NPREV(1) = NSTAR
DO 390 1J = 1, NPREV(1)
DO 390 II = 1, EDIM
390 WPREV(II,IJ,1) = WSTAR(II,IJ)
ok
ke
ok
e Increment hull number and extreme matrix number
IEXT = IEXT+1
IF (IEXT.GT.NUMEXT) IEXT = 1
K=K+1
ke
*% Check for slowly converging solution
IF (K.LE.MAXI) GOTO 400
DONE = 1
SFLAG = 2
e
ok
¥k End of do while
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BRAYT
CONTINUE

Tracing function

IF ((TRACE.EQ.0).OR.(DONE.NE.O)) GOTO 295
M =K-1

WRITE(6,10) M

CALL PVRT(WSTAR, NSTAR, EDIM)

GOTO 130

Exit

CONTINUE

IF (TRACE.EQ.0) GOTO 510
WRITE(6,12)

CALL PVRT(WSTAR, NSTAR, EDIM)

IF (TRACE.NE.O) WRITE(6,14) SFLAG
RETURN

FORMAT (' OEXTREME MATRIX ',12)

FORMAT(///' ¥ START OF ITERATION ',I4,' ok !
& ' PROCESSING WITH EXTREME MATRIX ',12)
FORMAT(' ',4F10.4)

FORMAT(' OINTERSECTION SET V IS')

FORMAT (' OFINAL HULL FOR ITERATION ',12)
FORMAT('0 FINAL CONVEX HULL IS ')

FORMAT('0 STABILITY STATUS IS ',I2,//)

FORMAT (' OsHk#i# NOW PROCESSING VERTEX ',4F10.4)
FORMAT (' 0OINITIAL CONVEX HULL')

FORMAT (' OTEMPORARY HULL IS NOW')

END

www.manaraa.com



174

GENPT
Fededriviovicicleinidinivicicieioicioledvivioiioioiioioiolnioioloioidodolvion dooeiolooioiiodoledoled doiolede
Wk Foke
ke GENPT wie
¥k ' %k

*MM*MWMMMMMM

Generates new vertex point, given the extreme
matrix and current vertex. If it is outside the
current hull, it is added and stability is checked.

INPUTS: EMAT -~ Extreme matrix

EDIM - Dimension of system

WSTAR - Convex hull

NSTAR - Number in hull

ANG - Array of angles for WSTAR

WZERO - Initial vertex set

NZERO - Number of vertices in initial vertex
set

NEWPT - Current vertex

TRACE - Set to nonzero value if want a trace
of results

OUTPUTS: WSTAR -
NSTAR -
NEWPT -
MXVRT - Maximum number of vertices in any
hull during course of algorithm.
SFLAG - Stable/Unstable status

NEWFLG - Tells if new point added to hull
0 - not added
1 - added to hull
PSEUDO~-CODE:

NEWPT = Extreme-matrix * NEWPT
If NEWPT is outside current hull
Set new-point-added-flag to 'yes'
Add new point to next-vertex-set
If not overflow
If next-vertex-set and initial-vertex-set do
not intersect,
Set stable-flag to 'unstable'
Else
Set new-point-added-flag to 'no'

FERIIEIYIEIISIEIIIEFSIIIISIISIIISIIRISSSIIESISILLYE
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GENPT

SUBROUTINE GENPT(EMAT, EDIM, WSTAR, NSTAR, ANG, WZERO,
& NZERO, NEWPT, TRACE, MXVRT, SFLAG, NEWFLG)

Foke
Foke
DOUBLE PRECISION EMAT(3,3), WZERO(2,10), WSTAR(2,256)
DOUBLE PRECISION NEWPT(6), ANG(256)
INTEGER EDIM, NZERO, NSTAR, TRACE
INTEGER SFLAG, MXVRT, NEWFLG
*¥
wk Function subprograms
INTEGER CKVRT, INVRT
Fok
%k !
CALL MMULT(EMAT, NEWPT, EDIM, EDIM, 1, NEWPT)
IF (TRACE.NE.O) WRITE(6,20) (NEWPT(M),M=1,EDIM)
et
ik If not on or in convex hull, put it in
171  IF (CKVRT(NEWPT, WSTAR, NSTAR, EDIM).EQ.1) GOTO 190
NEWFLG = 1
IF ((NSTAR+1).GT.MXVRT) MXVRT = NSTAR + 1
CALL ADDVT(NEWPT, WSTAR, NSTAR, ANG, EDIM, TRACE,
& SFLAG)
wik If not overflow, check for instability
IF (SFLAG.NE.O) GOTO 189
IF (INVRT(WZERO, NZERO, WSTAR, NSTAR, EDIM).EQ.0)
& SFLAG = 1
189 GOTO 200
Fde
e Else in convex hull

190 NEWFLG = 0
IF (TRACE.NE.O) WRITE(6,16)
RETURN

FORMAT(' POINT NOT ADDED ‘)
FORMAT(' NEW POSSIBLE POINT IS ',4F10.4)
END

11 SRIEY
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VRTEL
Mmmwmmmmmmmmmmm
fk Feoe
ok VRTEL dede
sk f*ek

Fededdririededededoicloicioiedvivieleloiodeirioloioieieioicidoioidoieioidoidodoledoieicioieioiohloloieieded

Checks to see if a given point is in the vertex set

INPUTS: POINT - Coordinates of point to check
IDIM - Dimension of points
SET Vertex set
NSET - Number of vertices in set

OUTPUT: VRTEL Set to 1 if point is found in vertex

set, otherwise it is 0.
PSEUDO-CODE :

Set VRTEL to "not found"
Do for each vertex in set while not found
If vertex is close to POINT
Set VRTEL to "found"
End

INTEGER FUNCTION VRTEL(POINT, IDIM, SET, NSET)

T fi§fiiHErGPriiiiiriig

DOUBLE PRECISION SET(2,256), POINT(3), ERR
INTEGER IDIM, NSET, I

Function subroutine

DOUBLE PRECISION PDIFF

ERR = 1.D-8

I iz

VRTEL = 0
I=1
110 IF ((I.GT.NSET).OR.(VRTEL.EQ.1)) GOTO 120
IF (PDIFF(SET(1,I), POINT, IDIM).LE.ERR) VRTEL = 1

I=1I+1
GOTO 110
120  CONTINUE
ke
%o
RETURN
END
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EQVRT
Fedviniieicdeiiciinivivivieiciiolloeioidoleoiioidoiioiioivioiioioichoholviofoloinioiiolodokdeloicdedeiok
ok , deke
ek EQVRT bded
oe wk
Ffridededdvicieiivivirivioioiviokioiioikidcicioioloioioirioiooiioeiok ofieidoiloloeloicloiodeiodoloe e

Checks to see if the two convex hull vertex sets are
equivalent ("close").

INPUTS: SETA - Convex set A
NUMA - Number of vertices in set A
SETB - Convex set B
NUMB - Number of vertices in set B
IDIM - Dimension of points in a vertex

OUTPUTS: EQVRT

Result of check
0 - not equivalent
1 - equivalent

PSEUDO-CODE:

If number of vertices in each set are not equal
Set EQVRT to not-equivalent
Else
Set EQVRT to equivalent
Do for each vertex while still equivalent
If magnitude of vector difference between
respective vertices is larger than allow-
able error then
Set EQVRT to not-equivalent
End

INTEGER FUNCTION EQVRT(SETA, NUMA, SETB, NUMB, IDIM)

I: (PREEGERORIGEOIIIGEIGEERIEEILIGYIGLE

DOUBLE PRECISION SETA(2,256), SETB(2,256), ERR
INTEGER NUMA, NUMB, IDIM, I

This is a function subprogram

DOUBLE PRECISION PDIFF

ERR = 1.D-8

Iy % %

If number of vertices not equal, exit
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EQVRT
IF (NUMA.EQ.NUMB) GOTO 110
EQVRT = 0
GOTO 130
*
*k Else check each vertex while sets are still equivalent
110 EQVRT = 1
I=1
120 IF((EQVRT.NE.1).0R. (I.GT.NUMA)) GOTO 130
IF (PDIFF(SETA(1,I), SETB(1,I), IDIM).GT.ERR)
& EQVRT = 0
I=1+1
GOTO 120
ke
wde

130  CONTINUE
wk

RETURN
END

deie
e
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INVRT
Fedeldvieieieloirieloioiileiolodeiekioioiioloiioicdoideidoiioioloiokidololedeloleleteleieiedololodedeledelede
dede sk
Fe INVRT ey
ke ' Sk

wmm*m**mﬂmm*m**mmmmm

Checks to see if the two convex hull vertex sets
intersect.

INPUTS: SETA - Convex set A
NUMA - Number of vertices in set A
SETB - Convex set B
NUMB ~ Number of vertices in set B
IDIM - Dimension of points in a vertex

OUTPUTS: INVRT

Result of check
0 - do not intersect
1 - intersect

PSEUDO-CODE:

Set INVRT to no-intersection
Do for each vertex in set A while no intersection
For each vertex in set B
If magnitude of vector difference between
vertices is smaller than allowable error
Set INVRT to intersection
End
End

INTEGER FUNCTION INVRT(SETA, NUMA, SETB, NUMB, IDIM)

3 FREGREGEREEIROYOIIIIRYIGIOIGEGEREGYFGL

DOUBLE PRECISION SETA(Z2,256), SETB(2,256), ERR
INTEGER NUMA, NUMB, IDIM, I,J

¥k This is a function subprogram
DOUBLE PRECISION PDIFF
Fede
ok
ERR = 1.D-8
ek
dok
ke Check each vertex while no intersection
INVRT = 0
I=1
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100 IF((INVRT.NE.0).OR.(I.GT.NUMA)) GOTO 200
ok

%%
DO 110 J = 1,NUMB |
IF (PDIFF(SETA(1,I), SETB(1,J), IDIM).LE.ERR)
& INVRT = 1
110 CONTINUE
e
I=I+1
GOTO 100
%k
Jode
200  CONTINUE
ek
RETURN
END
%k
*k

INVRT
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FRMIN
Fekdeidriivieioiiviviodelodeiciidvicivieioioviolioiiioioleiioicicleinoldoiniiioldoiololricioionololohok
Wk
FRMIN ek
ok

&%

Fedeiedeiededeleieldviciodeivioloieloivicivideiideiedoiciolololololicioiloiiolkddeoidoidololeloidoldoloies

ke

sets.

INPUTS: SETA
NUMA
SETB
NUMB
IDIM

OUTPUTS: SETZ
NUMZ

PSEUDO-CODE :

End
End

FIEiIiREEEYREIEEILIIYIISSIIEELEGSE LY

Gets the intersection of the two convex hull vertex

Convex set A

Number of vertices in set A
Convex set B

Number of vertices in set B
Dimension of points in a vertex

Intersection of the two sets
Number of vertices in SETZ

Set Number-in-SETZ to zero
Do for each vertex in set A
Set intersection-flag to "no"
For each vertex in set B while no intersection
If magnitude of vector difference between
vertices is smaller than allowable error
Increment number-in-SETZ
Place vertex in SETZ
Set intersection-flag to "yes"

SUBROUTINE FRMIN(SETA, NUMA, SETB, NUMB, IDIM, SETZ,

&

i

NUMZ)

DOUBLE PRECISION SETA(2,256), SETB(2,256),SETZ(2,256),

&

ERR

INTEGER NUMA, NUMB, NUMZ, IDIM, I,J, INFLG

ERR = 1.D-8

P 3% %

This is a function subprogram
DOUBLE PRECISION PDIFF
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NUMZ = 0
Wk
e Check each vertex in set A
DO 200 I = 1, NUMA
woke
wde Check each vertex in set B while no intersection
INFIG = 0
J=1
110 IF((J.GT.NUMB).OR. (INFLG.NE.0)) GOTO 150
IF (PDIFF(SETA(1,I), SETB(1,J), IDIM).GT.ERR)
& GOTO 140
NUMZ = NUMZ + 1
DO 130 K = 1, IDIM
130 SETZ(K,NUMZ) = SETA(K,I)
INFIG = 1
140 CONTINUE
J=J+1
GOTO 110
*ok
150 CONTINUE
200 CONTINUE
woik
RETURN
END
%
Fok
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PDIFF

Fedcdeiivieicleliricicioleloioinsiviioioidcivivioiodeloivioieledorioioleloieloloiokdetoldololeoloiodeiokdolede
ke we
Fk PDIFF L
dede wd
Fedededdeikivieidoiiciviioiokicioleicioioivioloicioiololniolioileidokcdoioieloloioiodeledoioliollokivide
F%
Fok
ek Finds magnitude of difference between two vertices.
Wik PDIFF = SQUARE ROOT((A1-B1)**2 + (A2-B2)**2 + ., . )
Fodk
w¥e
wk INPUTS: A - Point A
% B - Point B
¥k NUM - Dimension of point
wk
wk OUTPUTS: PDIFF - Magnitude of difference between
Fk points.
#k
wde

DOUBLE PRECISION FUNCTION PDIFF(A,B,NUM)
Fk
ik

DOUBLE PRECISION A(10), B(10), SUM

INTEGER NUM, I
wk
F%

SUM = 0.
DO 100 I = 1,NUM
100 SUM = SUM + (A(I)-B(I))**2

fek
PDIFF = DSQRT(SUM)
*k
RETURN
END
*k
Jeke
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AINIT

Feicdedcieideivivivieicvieloicivickioinlritleioiioidoiciotoivivioiioioideldloleieleiioioldoiiolololoioloiok
*ke weke
ok AINIT ok
Foe e
dedelediciokdeivickivieioivlefoleicloloieloicioivioioicdoideioioickiidoioiioioddolobicidoileleioloivleioior
Fe
i Initialize vertex angle array
e ONLY WORKS FOR SECOND ORDER SYSTEMS
wk
Ly INPUTS: HULL - Convex hull
Wk NHULL - Number in hull
e IDIM - Dimension of points
el
R OUTPUTS: ANGLE - Array of angles of vertices in hull
Feke
dede

SUBROUTINE AINIT(HULL, NHULL, IDIM, ANGLE)
e
Fode

DOUBLE PRECISION HULL(2,256), ANGLE(256)
INTEGER NHULL, IDIM, I

%k
x%
DO 100 I = 1, NHULL
100  ANGLE(I) = DATN2(HULL(2,I), HULL(1,I))
ok
RETURN
END
*%k
ke
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MPOWR

Fdeicdeirielriieiiolinleleiriviodoioinioivioiiolrioioioieiioiiviolicioieioioieioleicidoidioi ol dooiedoiviok
e *oke
bl MPOWR ok
ke *k
Fedeieirivicivicioiicieicleiddeivicldeiioichoivioleiolvicinieioicidloioioidoivioleioioiiidoiioioioioloiiciorio
we
¥ Raise matrix to a positive power.
Wk
ke INPUTS: A - Matrix :
i IDIM - Number of rows and cols in A
*% IPWR - Matrix is raised to this number
woke
ke OUTPUTS: RSLT - Result
wk
ke
*k

SUBROUTINE MPOWR(A, IDIM, IPWR, RSLT)
Wk

13

100
ke

13515

150

i3

1%

DOUBLE PRECISION A(3,3), RSLT(3,3), TEMP(3,3)
INTEGER IDIM, IPWR, I, J

Set TEMP to input matrix
DO 100 I = 1, IDIM
DO 100 J = 1, IDIM
TEMP(I,J) = A(I,J)

If power is not 1, then do multiplications
IF (IPWR.LE.1) GOTO 140

DO 120 I = 1, IPWR-1

CALL MMULT(A, TEMP, IDIM, IDIM, IDIM, TEMP)

CONTINUE
Now form result
DO 150 I 1, IDIM

DO 150 J = 1, IDIM
RSLT(I,J) = TEMP(I,J)

RETURN
END
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186

Multiplies two matrices together: C = A * B

INPUTS: A,B - Matrices to be multiplied
A: ROWA rows
COLA columns
B: COLA rows
COLB columns

OUTPUTS: C - Resultant matrix
ROWA rows
COLB columns

SUBROUTINE MMULT(A, B, ROWA, COLA, COLB, C)

DOUBLE PRECISION A(3,3), B(3,3), C(3,3), RSLT(3,3),SUM
INTEGER I, J, K, ROWA, COLA, COLB

DO 160 I=1, ROWA
DO 140 J=1, COLB
SUM = 0.
DO 120 K=1,COLA
SUM = SUM + A(I,K)*B(K,J)
CONTINUE
RSLT(I,J) = SUM
CONTINUE
CONTINUE

DO 180 I = 1, ROWA
DO 180 J = 1, COLB
C(I,J) = RSLT(I,J)

RETURN
END

MMULT
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ADDVT
dedeideiedededeicicicieieloieloleleoieioieioledelrieeleoieiolodeedodeloieiielodedeoiolededeeelokded
e ik
e ADDVT *
*k dee

Fedededededdodchdedcldvicidoiehiviciciiclivicloloiloiiiohokioiloivleicioldcledoiioledodoitoicioflvid

Add a vertex to convex-hull
ONLY WORKS FOR SECOND ORDER SYSTEMS

INPUTS: POINT =~ Vertex to add to hull
HULL - vertex set
NHULL - Number of vertices in vertex set
ANGLE - Array of angles of points
IDIM - Dimension of points in convex hull
TRACE - Nonzero if results are to be traced

OUTPUTS: HULL - New vertex set
NHULL Number of vertices in new vertex set
OVRFIW - Overflow flag
0 - no overflows occured
3 - too many vertices in set

PSEUDO-CODE:

If too many vertices
Set overflow indication
Else
Clear overflow indication
Calculate angle of new-point
Do for all vertices in HULL while place for new
point not found
If angle of new-point < angle of vertex
Set found indication to "yes"
End

If place found
Do from last vertex back to place at which to
insert new-point
Next vertex = Current vertex
Next angle Current angle
End
Else
Set place to put point at end of array

Put new-point in place
Put angle of new-point in place

SRR S S S S SRS S S AR RS SRS EEEE S EEEEEEEEE
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ADDVT

Increment number in hull

Eliminate any vertices that do not form a
convex hull

SUBROUTINE ADDVT(POINT, HULL, NHULL, ANGLE, IDIM,
& TRACE, OVRFLW)

DOUBLE PRECISION HULL(2,256), ANGLE(256)
DOUBLE PRECISION POINT(4), PTANG
INTEGER NHULL,IDIM, OVRFLW, I, J, TRACE, IVERT, FOUND

Tracing function
IF (TRACE.NE.O) WRITE(6,2)
FORMAT(' POINT ADDED TO HULL')

Check for overflow

IF (NHULL.NE.256) GOTO 110
OVRFIW = 3
GOTO 200

CONTINUE
OVRFIW = 0

Calculate angle for new point
PTANG = DATN2(POINT(2), POINT(1))

Do for each vertex in hull while place not found
FOUND = 0
I=1
IF ((I.GT.NHULL).OR.(FOUND.NE.0)) GOTO 130
IF (PTANG.LT.ANGLE(I)) FOUND = 1
I=1+1
GOTO 120

Place to put new point is one less than last
index "I", if found

IF (FOUND.EQ.0) GOTO 155

IVERT =1 - 1
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L Move vertices and angles to make room for new point
DO 150 J = NHULL, iIVERT, -1
DO 140 I = 1, IDIM

140 HULL(I, J+1) = HULL(I, J)
150 ANGLE (J+1) = ANGLE(J)
GOTO 160
Foke
Fk If not found, set place to end of array
155 IVERT = I
Foke
e Put new point in its place

160 DO 170 I = 1, IDIM
170 HULL(I,IVERT) = POINT(I)
ANGLE (IVERT) = PTANG

dede
i Increment number in hull
NHULL = NHULL + 1
Fede
wk
% Eliminate vertices that do not form a convex hull

CALL ELIMN(HULL, NHULL, ANGLE, IDIM, TRACE)
200 CONTINUE
RETURN
END

i
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CKVRT
Feicleiedvdeiciodeicideivieieidviniioiioiiokiciiviciiioicdokiodoeiviivicdeicirioiioiicioiioioloiioik
Wk
CKVRT ok
ok

*%

dededeodededohdedededodedeiohdniohelidoloividodicidviviclelohlolofioioffelohdedoiioiofidoh i diokicdoion

ki
sk
ok
ek
e
%%
ok
ok

Tiiiieiidiratd

%
et

Check point to see if it is within or on the given
convex hull,
ONLY WORKS FOR SECOND ORDER SYSTEMS

INPUTS: POINT -~ Coordinates of point
WHULL -~ Vertices of convex hull
NHULL Number of vertices in hull
IDIM - Dimension of points

Result of check
0 - Not in convex hull
1 - In convex hull

OUTPUTS: CKVRT

PSEUDO-CODE:

If point is in third or fourth quadrant, reflect
into first or second quadrant

Do for each vertex in convex hull while point still
between hull boundary and origin.
Check if point is between this segment of hull and
origin.
(If first vertex, a reflection of the last
vertex must be used. If last vertex, a reflec-
tion of the first vertex must be used)
End

INTEGER FUNCTION CKVRT(POINT, WHULL, NHULL, IDIM)

DOUBLE PRECISION POINT(4), WHULL(2,256), TEMP(4)
INTEGER NHULL, IDIM, I, J

This is a function subprogram
INTEGER SANGL
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CKVRT

Put point in first or second quadrant
IF (POINT(2).GE.O0.) GOTO 99

DO 98 I =1, IDIM

POINT(I) = -POINT(I)
CONTINUE

" Initialize loop variables

CKVRT = 1
I=0

Do while I <= NHULL and CKVRT = In-hull
IF((I.GT.NHULL).OR. (CKVRT.NE.1)) GOTO 180

Check for first vertex
IF (I.NE.O) GOTO 120
DO 110 J = 1, IDIM
TEMP(J) = -WHULL(J,NHULL)
CKVRT = SANGL(TEMP, WHULL(1,1), POINT, IDIM)
GOTO 150

Check if last vertex
IF (I.NE.NHULL) GOTO 140
DO 130 J = 1, IDIM
TEMP(J) = -WHULL(J,1)
CKVRT = SANGL(WHULL(1,I), TEMP, POINT,

& IDIM)

GOTO 150

Check for any other vertex
CKVRT = SANGL(WHULL(1,I), WHULL(1l,I+1),

& POINT, IDIM)

I=1I+1
GOTO 105

CONTINUE
RETURN
END
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SANGL
drilededelcicicioiviciicliviciooivkdeioloioliciioiiodeloilofdoiciioloioieioidoidoieioinieloiokiokicio
wok ok
% SANGL w
ke ok

Sededrivivdelehdeiciodelodioidolniviciivioiokiciohicidelivioioiicioidofotedoloheloleioliolodeioieleioio kiele

This routine is used to find if the point C is to
the left of the vector determined by AB, or if the
point is on this vector. If the point is coincident
with A or B then it is assumed to lie on the vector.
If the sign of the angle between the vectors deter-
mined by AB and Al is positive, then the point is to
the left of the vector. A positive angle is measured
counterclockwise. If the angle is near zero or +-180
then the point is assumed to be colinear with the
vector through A,B.

ROUTINE ONLY WORKS FOR SECOND ORDER SYSTEMS.

INPUTS: A,B,C - Cordinates of the points A, B, and C
IDIM - Dimension of the points

OUTPUTS: SANGL - Indication of point C
1 -~ C is on the line or to the
left of the vector determined
by points A and B.
0 - C is not close or to the left
of the vector.

PSEUDO~CODE:

If point C is close to A or B then
SANGL = 1

Else
ANGLE1 = angle of vector AB with x-axis
ANGLE2 = angle of vector AC with x-axis
Angle from AB to AC = ANGLE2 - ANGLEl

If Angle > PI then Angle
If Angle < -PI then Angle

= Angle - 2*PI

= Angle + 2*PI

If (Angle > 0 and Angle < PI) or (]Angle| < Error)
or (|Angle-PI| < Error) or (|Angle+PI| < Error)
then SANGL = 1

Else SANGL = 0

SRS S SRS S SRR RS S RS S R RS EEEEEEEEEEEEEEEE
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SANGL

INTEGER FUNCTION SANGL(A, B, C, IDIM)

DOUBLE PRECISION A(4), B(4), C(4)
DOUBLE PRECISION ANGLE1l, ANGLEZ2, ANGLE, ERR, PI
INTEGER IDIM
ik This is a function subroutine
DOUBLE PRECISION PDIFF

i1

ERR = 1.D-8
PI = 3.14159265359D0

i3

If point C is close to A or B, set flag and return
IF((PDIFF(A,C,IDIM).GT.ERR).AND.
& (PDIFF(B,C,IDIM).GT.ERR)) GOTO 100
SANGL = 1
GOTO 150

Else calculate angles
0 ANGLE1l = DATN2(B(2)-A(2), B(1)-A(1))
ANGLE2 = DATN2(C(2)-A(2), C(1)-A(1))
ANGLE = ANGLE2 - ANGLE1

off

#k
we Make sure angle in range from -PI to +PI
IF (ANGLE.GT.PI) ANGLE = ANGLE - 2*PI
IF (ANGLE.LT.-PI) ANGLE = ANGLE + 2*PI
Wk
¥k and now, for the BIG test.....
SANGL = 0
IF( ((ANGLE.GT.0.).AND. (ANGLE.LT.PI)).OR.
& (DABS(ANGLE).LT.ERR).OR.(DABS(ANGLE-PI).LT.ERR).OR.
&  (DABS(ANGLE+PI).LT.ERR) ) SANGL = 1
dede
150 CONTINUE
RETURN
END
Foke
Fee
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ELIMN
Fedelededeledeidododedodededofodeiededoiodedelodoiodotododedodeioiciicdodelododedededededodetetodoiedodedededodotededs
by %'
ke ELIMN e
dok *k

Fededededcdedededodododedelodrioioiohieiviviviviohidvloiodelloiddeiokdoivivioidoivkdoiivitoleteloiedolelete

Eliminates any vertices in set that do not form a
convex hull, i.e. if the vertex is contained in the
convex hull of the rest of the vertices. Practically
speaking we only need to check if that vertex is
contained in the hull if a line were drawn from the
previous vertex to the next vertex

The vertices must be sorted in order upon entry to
this routine.

INPUTS: VSET - Vertex set
NVERT - Number of vertices in set
IDIM - Dimension of points
ANGLE - Array of vertex angles
TRACE - Nonzero if results are to be traced

OUTPUTS: VSET ~ Vertex set that forms a convex hull
NVERT - Number of vertices in convex hull

PSEUDO-CODE:

Do while a vertex is eliminated
Do for each vertex in the set while none
eliminated
If first vertex then
Set TEMP vertex to reflection of last vertex
Check if first vertex is inside hull
determined by TEMP and second vertex
Else
If last vertex then
Set TEMP vertex to reflection of first
vertex.
Check if last vertex is inside the hull
determined by previous vertex and TEMP.
Else
Check if vertex is inside hull determined
by previous and next vertex

If vertex not to be eliminated
Increment vertex set index
End

SRS S SRR S S S S S AR SRS EEREREEEEEEEE
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If a vertex is to be eliminated
If number of vertices is less than 2 then
Set eliminate-flag to "no" so that this
subroutine will be terminated.
Else
Decrement number in set
Starting at vertex to be eliminated
Move next vertex to the current position in
set.
Move next angle to the current position in
the array

LOCAL VARIABLES:

EFLAG - Indicates if a vertex is to be eliminated
0 - not eliminated
1 - eliminated
TEMP - Coordinates of vertex if it is before first
vertex in set or after last vertex.
I,3,K - Iteration variables

SUBROUTINE ELIMN(VSET, NVERT, ANGLE, IDIM, TRACE)

i fIFfIfIEIEIIIIEIIEIIEIEGIGEITS

DOUBLE PRECISION VSET(2,256), ANGLE(256), TEMP(4)
INTEGER NVERT, IDIM, I, J, K, EFLAG, TRACE

Fee
ke This is a function subroutine
INTEGER SANGL
wok
ke
ok Set flag to indicate 'eliminated'
EFLAG = 1
e
e Start of big do while loop
100 IF (EFLAG.NE.1) GOTO 200
EFLAG = 0
I=1

Do check for each vertex in set while none
eliminated
IF((I.GT.NVERT).OR. (EFLAG.NE.0)) GOTO 180

T t51ti

Check if first vertex
IF (I.NE.1) GOTO 120
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ELIMN

DO 110 J = 1, IDIM

TEMP(J) = -VSET(J,NVERT)
EFLAG = SANGL(TEMP, VSET(1,2), VSET(1,1), IDIM)
GOTO 150

Check if last vertex
IF (I.NE.NVERT) GOTO 140
DO 130 J = 1, IDIM
TEMP(J) = -VSET(J,1)
EFLAG = SANGL(VSET(1,I-1), TEMP, VSET(1,I),

& IDIM)

GOTO 150

Check for any other vertex
EFLAG = SANGL(VSET(1,I-1), VSET(1,I+1),

& VSET(1,I), IDIM)

Increment index count if nothing to be eliminated
IF (EFLAG.EQ.0) I =1 + 1

Back to top of loop
GOTO 105

Eliminate vertex if it is to be eliminated
IF (EFLAG.EQ.0) GOTO 195
IF (NVERT.GE.2) GOTO 183
EFLAG = 0
GOTO 195

Trace eliminated vertex

IF (TRACE.EQ.0) GOTO 185
WRITE(6,2) I,(VSET(J,I),J=1,IDIM)
FORMAT( ' OELIMINATE ',12,4F10.4,/)

Eliminate vertex
NVERT = NVERT -~ 1
DO 193 J = I, NVERT
DO 190 K = 1, IDIM
VSET(K,J) = VSET(K,J+1)
ANGLE (J) = ANGLE(J+1)

CONTINUE
Back to top of loop
GOTO 100

CONTINUE

RETURN
END
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EIGEN
**mmwmmmmmmmmmmm
%% deie
e EIGEN dee
sk Lic )
mmmmmwmmm*

Checks that the eigenvalues of the extreme matrices
are all on or within the unit circle.

ONLY WORKS FOR SECOND ORDER SYSTEMS !

INPUTS: AMAT - Matrices to check
IDIM - Dimension of system
NMAT Number of matrices
TRACE - Set to nonzero value if want trace
of results

OUTPUTS: EFLAG Set to 4 if one eigenvalue outside
unit circle

Set to 0 otherwise

PSEUDO-CODE :
Set EFLAG to "stable"

Do for each matrix while EFLAG is "stable"
Calculate coefficients of polynomial
Calculate discriminate
If roots imaginary

Largest-root = magnitude of root
Else
Largest-root = maximum of absolute value of
both roots

If Largest-root > 1 then EFLAG = "unstable"
End

SUBROUTINE EIGEN(AMAT, IDIM, NMAT, EFLAG, TRACE)

P $33i9¥riiiRPOEfTEIIIREISISFIIbIIEIEISESITIGEGYE

DOUBLE PRECISION AMAT(3,3,2), A, B, C, DIS, LROOT,
& RONE, RTWO
INTEGER NMAT, IDIM, EFLAG, I, TRACE

i
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Set EFLAG to "stable"
EFLAG = 0

Check each matrix while still stable

I=

1

IF ((I.GT.NMAT).OR.(EFLAG.NE.0)) GOTO 170

Calculate polynomial coefficients

A =1.D0
B = -AMAT(1,1,I)-AMAT(2,2,I)
C = AMAT(1,1,I)*AMAT(2,2,1)-AMAT(1,2,I)*AMAT(2,1,I)

Calculate discriminate
DIS = B*B =~ 4 ,DO*A*C
IF (DIS.GE.0.D0) GOTO 130

Imaginary roots
LROOT = (DSQRT(B*B-DIS))/(2.D0O*DABS(A))
GOTO 150

Real roots

RONE = (-B + DSQRT(DIS))/(2.D0O*A)
RIWO = (-B - DSQRT(DIS))/(2.D0O*A)
LROOT = DMAX1(DABS(RONE), DABS(RTWO))

Check eigenvalues
IF (LROOT.GT.1.D0) EFLAG = &

I=T1+1
GOTO 110

Tracing function

IF (TRACE.EQ.0) GOTO 180
I=1-1
IF (EFLAG.NE.O) WRITE(6,2) I
IF (EFLAG.EQ.0) WRITE(6,4)

RETURN

FORMAT ('OEXT MATRIX ',I2,' HAS EIGENVALUE OUTSIDE',

&

' UNIT CIRCLE.')

FORMAT('ONO EXT MATRIX HAS EIGENVALUE OUTSIDE',

&
END

' UNIT CIRCLE.")

EIGEN
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PVRT

Prints the vertex set.

INPUTS: VERT - Set of vertices

NVERT - Number of vertices
IDIM -~ Dimension of points

SUBROUTINE PVRT(VERT, NVERT, IDIM)

DOUBLE PRECISION VERT(2,256)
INTEGER NVERT, IDIM, I, J

WRITE(6,2)

DO 100 J = 1, NVERT

WRITE(6,4) J, (VERT(I,J), I=1,IDIM)
RETURN

FORMAT(' ")
FORMAT(1X,15,6F10.5)
END

PVRT
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This subroutine implements the accelerated procedure
for the Brayton-Tong algorithm when the eigenvalues of
the extreme matrix are close to 1. It finds the first
power of the extreme matrix that maps the given
vertex inside the convex hull.

Starting from 2, the power of the extreme matrix is
doubled until a point lands inside the hull. A binary
search between the last power used and the current
power finds the first power of the extreme matrix
that causes the point to land inside the hull. The
The point that is generated by the previous extreme
matrix is then added to the hull.

The procedure is terminated if instability is
detected, an overflow in the number of vertices occurs
or the power of the extreme matrix reaches some
maximum.

INPUTS: EMAT Difference equation extreme matrix

EDIM Dimension of system

WSTAR - Convex hull

NSTAR - Number in hull

ANG - Array of angles for WSTAR

WZERO - Initial vertex set

NZERO - Number of vertices in initial vertex
set

POINT - Current vertex

TRACE - Set to nonzero value if want a trace
of results

QUTPUTS: WSTAR -
NSTAR -~
MXVRT - Maximum number of vertices in any
hull during course of algorithm.
SFLAG - Stable/Unstable status

PSEUDO-CODE :

Set Current-matrix to extreme-matrix
Set current-power to one

ACCEL
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ACCEL

Do while new point is outside hull and hull is stable
Set last-point to new-point
Set new-point to vertex
Current-matrix = current-matrix * current-matrix
Current-power = current-power * 2

Generate new vertex point, adding it to hull if
possible.

If hull is stable and current-power > 1024
Set stable-flag to 'indeterminate by accelerated’
End (of do while)

If stable
Lower = 0
Upper = current-power / 2
If upper = 1 then set upper to 2
Do while (upper - lower) > 1 and hull is stable
Midpoint = (lower + upper) /2

Current-matrix = (extreme-matrix ** midpoint)
Generate new vertex point, adding it to hull if
possible

If added to hull (outside hull)
Lower = midpoint
Else
Upper = midpoint
End

End

LOCAL VARIABILES:

CMAT - Current power of extreme matrix
(current-matrix)

CPWR - Power of ext matrix being used
(current-power)

IPWR - Power of ext matrix used to get current

point from vertex passed in.
NEWPT - New vertex point
NEWFLG - New-point-outside-flag 1=yes 0=no
LPNT - Last vertex generated that fell outside the

hull
Low - Lower index on binary search
UPP - Upper index on binary search

MID - Middle index on binary search

www.manaraa.com
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SUBROUTINE ACCEL(EMAT, EDIM, WSTAR, NSTAR, ANG, WZERO,
& NZERO, POINT, TRACE, MXVRT, SFLAG)

DOUBLE PRECISION EMAT(3,3), WZER0(2,10), WSTAR(2,256),
& POINT(6), ANG(256)
INTEGER EDIM, NZERO, NSTAR, TRACE, SFLAG, MXVRT

DOUBLE PRECISION CMAT(3,3), NEWPT(3), LPNT(3)
INTEGER CPWR, NEWFLG, LOW, UPP, MID, I, J, IPWR
IF (TRACE.NE.O) WRITE(6,10)

Set Current-matrix to extreme-matrix

DO 110 I = 1, EDIM

DO 110 J = 1, EDIM

CMAT(I,J) = EMAT(I,J)

Set current-power to one

CPWR = 1
DO 115 I = 1, EDIM
NEWPT(I) = POINT(I)

Do while new point is outside hull and hull is stable
SFLAG = 0

NEWFLG = 1

IF ((NEWFLG.EQ.0).OR.(SFLAG.NE.0)) GOTO 200

Figure out IPWR
IPWR = CPWR
IF (CPWR.EQ.1) IPWR = 0

Set last-point
DO 150 I = 1, EDIM
LPNT(I) = NEWPT(I)

Set new-poinﬁ to vertex
DO 155 I = 1, EDIM
NEWPT(I) = POINT(I)

Current-matrix = current-matrix * current-matrix
CALL MMULT(CMAT, CMAT, EDIM, EDIM, EDIM, CMAT)

ACCEL
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ACCEL

Current-power = current-power * 2
CPWR = CPWR * 2

Tracing function
IF (TRACE.NE.O) WRITE(6,12) CPWR

Generate new vertex point, adding it to hull if
possible
CALL GENPT(CMAT, EDIM, WSTAR, NSTAR, ANG, WZERO,

& NZERO, NEWPT, TRACE, MXVRT, SFLAG, NEWFLG)

If hull is stable and current-power > 1024

Set stable-flag to 'indeterminate by accelerated'
IF ((SFLAG.EQ.0).AND. (CPWR.GT.1024)) SFLAG = 5
GOTO 130

End (of do while)
CONTINUE

If stable

IF (SFLAG.NE.O) GOTO 270

0
current-power / 2

Lower
Upper
Low =
UPP = CPWR / 2

If upper = 1 then set upper to 2
IF (UPP.EQ.1) UPP = 2

ot

Do while (upper - lower) > 1 and hull is stable
IF (((UPP-LOW).LE.1).OR. (SFLAG.NE.O)) GOTO 260

Midpoint = (lower + upper) /2
MID = (LOW + UPP) / 2
IF (TRACE.NE.O) WRITE(6,16) MID

Current-matrix = (extreme-matrix ** midpoint)
CALL MPOWR(EMAT, EDIM, MID, CMAT)

Generate new vertex point, adding it to hull if
possible

DO 230 I = 1, EDIM

NEWPT(I) = LPNT(I)

CALL GENPT(CMAT, EDIM, WSTAR, NSTAR, ANG, WZERO,

& NZERO, NEWPT, TRACE, MXVRT, SFLAG, NEWFLG)
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If added to hull (outside hull)

Lower = midpoint
IF (NEWFLG.EQ.0) GOTO 240
LOW = MID
GOTO 250
Else
Upper = midpoint
UPP = MID
CONTINUE
GOTO 220
End
CONTINUE
CONTINUE

Tracing func
IPWR = IPWR

IF ((TRACE.NE.O).AND.(SFLAG.EQ.0)) WRITE(6,14) IPWR

RETURN

FORMAT('O +++HACCELERATED PROCEDURE STARTEDH+-+H--+')

FORMAT('
FORMAT('
FORMAT('
END

tion
+ LOW

MATRIX POWER IS ',I4)
POWER OF POINT LAST ADDED IS ',I4)
BINARY SEARCH: MID = ',14)

ACCEL
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B. Program to Find the Region of Stability
for a Digital Filter: BGRID

Directory
Page
BGRID 206
QUEST 212
WINIT 217
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BGRID

FING,Y,L
$EMA (DAT)

PROGRAM BGRID (4, 100)
Jede
wk

’WM*MM**H*M**WMMMM*MMM*M*MM

ok e
e ok
e THIS PROGRAM USES THE BRAYTON-TONG CONSTRUCTIVE Fk
*% ALGORITHM TO FIND THE REGION IN THE PARAMETER *dk
*% PLANE WHERE THE EQUILIBRIUM X = 0 OF A SECOND wk
%% ORDER DIGITAL FILTER IS STABLE OR G. A. S. Wk
%% %k

FILE "BGRID

This program is invoked by the command:
RU,BGRID,LU1,LU2,LU3
where LUl is the lu # where questions and prompts will
be printed
LU2 is the lu # where responses to questions are
expected. An error message will be printed
if this is zero.
LU3 is the lu # where responses are echoed (to
build a batch run response file)
If no LUs are specified, the defaults are:

LUl = 1 (terminal)
LU2 = 1 (terminal) if LUl is also 1
0 (bit bucket) otherwise
LU3 = 0 (bit bucket)
PSEUDO-CODE

Set up LU numbers with parameters from program
run string.

Get data used to run program

If not building response file for batch
Set gains of nonlinearities

TIIITIYSIIFSIESFISIEISIIOSLIISFEILIILIBIILSE
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BGRID
Print data entered by user

Get initial convex hull
Set A2 to initial value
Do while A2 > A2-stop-value
Set Al to initial value
Get Al-stop-value
Do while Al <= Al-stop-value
Get set of extreme matrices
If set exists,
Do Brayton-Tong algorithm
Put result in result-array
Increment Al
End
Print result-array for this A2 value
Increment A2
End

DOUBLE PRECISION EMAT(3,3,16), WZERO(2,10),
WSTAR(2,256), A1, A2, GAIN, GAINL,
RHO, A1lINIT, A1INC, A1STOP, A2INIT,
A2INC, A2STOP, NAME
INTEGER IBUF(5), PLU, ANSLU, ECHOLU, ROUND, RTYPE,
NUMEXT, EDIM, NZERO, NSTAR, SFLAG, TRACE, YES,
RSLT(101), IRSLT, I,
OVRFIW, MXVRT

PR eee

These are function subroutines
DOUBLE PRECISION GETLB, GTEND

Initial data
DATA YES/2HY /

f
i

T 1iffg

THIS PORTION IS A DEVIATION FROM STANDARD FORTRAN

Get parameters entered when program is invoked
CALL RMPAR(IBUF)

T $§$4d
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First one is LU where questions will be printed
PLU = IBUF(1)

Second is LU of answers. Also must handle case if
program is started with no parameters specified.

ANSLU = IBUF(2)

IF ((ANSLU.EQ.0).AND. (PLU.EQ.1)) ANSLU = 1

Third one is LU of echos if building batch run file
ECHOLU = IBUF(3)

Print error and abort if no answer LU specified
IF (ANSLU.NE.O) GOTO 99

WRITE(1, 50)

WRITE(6, 50)

STOP

3§ %

T i%

*oke

Fedelededeicdelledeielvicklivivivivioiiilvitieieiledcioiioleicteicieinioioiodoiioioioideieioioiicleivicinioik

ek
e
Fk
99
ok
%ok

%ok
drk
100

-

ii

-

13

&
&

Get program name
NAME = GETLB(0)

Write title
IF (PLU.NE.O) WRITE(PLU, 1) NAME

Get data about run

CALL QUEST(PLU, ANSLU, ECHOLU, ROUND, A1INIT, A1STOP,

RHO, OVRFLW)

If only building response file for batch, don't run
program
IF (ECHOLU.NE.O) GOTO 300

Set upper gain according to type of quantizer
GAIN = 1.DO
IF (ROUND.EQ.1) GAIN = 2.DO

Set lower gain according to type of overflow
GAINL = 0.D0

IF (OVRFIW.EQ.1l) GAINL
IF (OVRFLW.EQ.2) GAINL

=1.D0/3.D0
-1.D0

A1INC, A2INIT, A2STOP, A2INC, RTYPE, TRACE,

BGRID
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BGRID

Fk Do printing of entered info
WRITE(6,30) NAME
CALL DESCR(6)
IF (ROUND.EQ.1) WRITE(6,32)
IF (ROUND.EQ.0) WRITE(6,34)
IF (OVRFLW.EQ.0) WRITE(6,45)
IF (OVRFLW.EQ.1) WRITE(6,46)
IF (OVRFLW.EQ.2) WRITE(6,48)

%%
IF (RTYPE.NE.1) GOTO 120
WRITE(6,42) A1INC
GOTO 140

Wk

120 IF (RTYPE.NE.2) GOTO 130
WRITE(6,36) A1INIT, A1STOP, A1INC
WRITE(6,38) A2INIT, A2STOP, A2INC

GOTO 140
wodke
130 WRITE(6,44) ALINIT, A2INIT
Fde
140 WRITE(6,40) RHO
*i
EDIM = 2
MXVRT = 2
Feke
*% Get initial hull
CALL WINIT(EDIM, WZERO, NZERO)
Foke
ke
Wk MAIN PART OF PROGRAM
F¥k
A2 = A2INIT
Fo¥e
*% Do while value of A2 > stop value
220 IF (A2.LT.A2STOP) GOTO 250
IF (PLU.NE.O) WRITE(PLU,10) A2
ke
i Set initial values
Al = A1INIT
IRSLT = 1
deke
¥ Set A1STOP

IF (RTYPE.NE.1) GOTO 229

A1STOP = GTEND(A2)

IF (A1INC.LT.0.DO) A1STOP = -A1STOP
229 CONTINUE
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BGRID

Do while value of Al <= stop value for positive hor
increment or value of Al >= stop value for neg-
ative hor increment

IF (((A1.GT.A1STOP).AND. (A1INC.GE.0.D0)).OR.

& ((A1.LT.A1STOP).AND. (A1INC.LT.0.D0))) GOTO 240

Get extreme matrix

CALL GTMAT(A1l, A2, GAIN, RHO, EMAT, NUMEXT, SFLAG,
& GAINL)

IF (SFLAG.NE.O) GOTO 235

Do Brayton-Tong algorithm
CALL BRAYT(EMAT, EDIM, NUMEXT, WZERO, NZERO,
& WSTAR, NSTAR, SFLAG, MXVRT, TRACE)

Put result in result array
RSLT(IRSLT) = SFLAG

IRSLT = IRSLT + 1
Increment Al

Al = Al + AlINC

GOTO 230

CONTINUE

Get index of last result

IRSLT = IRSLT - 1

Print result for this value of A2
WRITE(6,2) A2, (RSLT(I), I=1,IRSLT)
Increment A2

A2 = A2 + A2INC

GOTO 220

CONTINUE

Print max number of vertices in any hull
WRITE(6, 52) MXVRT

IF (PLU.NE.O) WRITE(PLU,7) 1799

Ask if want to run again

IF (PLU.NE.O) WRITE(PLU,23)
READ(ANSLU,3) I

IF (ECHOLU.NE.O0) WRITE(ECHOLU, 3) I
IF (I.EQ.YES) GOTO 100
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STOP

FORMAT('BRAYTON-TONG STABILITY FOR DIGITAL FILTER ',
& A8)

FORMAT(' ',F6.3,2X,101I1)

FORMAT (A1)

FORMAT(A2,//)

FORMAT(IX 'A2 1§ ',F6.3)

FORMAT('DO YOU WANT TO RUN PROGRAM AGAIN ?')
FORMAT('l BRAYTON-TONG STABILITY ',A8)

FORMAT('0 ROUNDOFF QUANTIZER')

FORMAT('0 MAGNITUDE TRUNCATION QUANTIZER')

FORMAT('0 HOR START, END, AND INC IS ',3F10.4)
FORMAT(' VER START, END, AND INC IS ',3F10.4)
FORMAT('0 RHO IS ',F10.7,///)

FORMAT('0 DEFAULH'REGION GRID INCREMENT IS ',F8.6)
FORMAT('0 SINGLE POINT AT ',2F10.4)

FORMAT(' SATURATION OR ZEROING OVERFLOW')

FORMAT(' TRIANGULAR OVERFLOW')

FORMAT(" TWO'S COMPLEMENT OVERFLOW")

FORMAT(' ERROR IN BGRID: NO RESPONSE LU OR FILE.',/,
& ' PROGRAM BGRID ABORTED.')

FORMAT('OMAX NUMBER OF VERTICES IN ANY HULL IS ',I5)
END

BGRID
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Gets the responses needed to run the Brayton-Tong
algorithm for digital filters regardless of the filter
structure to be analyzed.

The responses are echoed to the device ECHOLU so
that a response file for batch can be formatted.

INPUTS: PLU - LU # of the device to ask questions
ANSLU - LU # of device to get responses from
ECHOLU - LU # of device to echo responses if
building a batch run file

OUTPUTS: ROUND - Type of quantization nonlinearity
0 - truncation quantizer
1 - roundoff quantizer
HSTART - Start of horizontal range to check
stability
HSTOP - End of horizontal range to check
stability
HINC - Horizontal grid increment
VSTART - Start of vertical range to check
stabilty
End of vertical range to check
stabilty
VINC - Vertical grid increment
RTYPE - Type of grid desired
1 - default region, HSTOP may
depend on the vertical
coordinate ,
2 - rectangle region, HSTOP fixed
3 - single point
TRACE - Flag set to 1 if operator wants a
trace of the algorithm for one
point
RHO - Value which will multiply all of the
extreme matrices to get a measure
of the global asymptotic stability
of the system
OVRFIW - Type of overflow nonlinearity
0 - saturation or zeroing

VSTOP

QUEST

www.manaraa.com
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QUEST

1 - triangular
2 - two's complement

PSEUDO-CODE:

Set trace-flag to "no"
Set grid-type-flag to "no run"

Do while grid-type-flag is "no run"
Ask for roundoff or truncation quantizers
If roundoff, set ROUND-flag to "round"
If truncation, set ROUND-flag to "truncation"

Set Overflow-flag to "saturation"
Ask for type of overflow
Set Overflow-flag appropriately

If operator wants to check the default region
Set grid-type-flag to "default"
Get grid increment from operator
Get default values
If operator wants to check reflection of default
region
Negate horizontal-increment
Else
If operator wants to check a region
Set grid-type-flag to "region"
Prompt operator for horizontal axis range &
increment
Prompt operator for vertical axis range & inc
Make sure signs on grid increments are correct
Else
If operator wants to check a single point
Set grid-type-flag to "single-point"
Get coordinates of point
If operator wants a trace
Set trace-flag to "yes"
End

Get value of rho

SUBROUTINE QUEST(PLU, ANSLU, ECHOLU, ROUND, HSTART,
& HSTOP, HINC, VSTART, VSTOP, VINC,
& RTYPE, TRACE, RHO, OVRFLW)
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DOUBLE PRECISION HSTART, HSTOP, HINC, VSTART, VSTOP,
& VINC, RHO
INTEGER PLU, ANSLU, ECHOLU, ROUND, RTYPE, TRACE,
& I, R, T, YES, OVRFIW, S, C
*%
DATA R/2HR /, T/2HT /, YES/2HY /, S/2HS /, C/2HC /
%k
sk
ik Clear flags
TRACE = 0
RTYPE = 0
Sk
100 IF (RTYPE.NE.O) GOTO 200
sk
ok Ask for roundoff or truncation

110 IF (PLU.NE.O) WRITE(PLU, 10)
READ(ANSLU,3) I

IF ((I.NE.R).AND.(I.NE.T)) GOTO 110
IF (I.EQ.R) ROUND = 1

IF (I.EQ.T) ROUND = 0

IF (ECHOLU.NE.O) WRITE(ECHOLU, 3) I

OVRFIW = 0

i

Get type of overflow

IF (PLU.NE.O) WRITE(PLU, 42)
READ(ANSLU,3) I

IF (ECHOLU.NE.O) WRITE(ECHOLU, 3) I
IF (I.EQ.S) OVRFIW =
IF (I.EQ.T) OVRFIW
IF (I.EQ.C) OVRFIW

0
1
2

i3

Ask if want to use default region
120 IF (PLU.NE.O) WRITE(PLU, 12)
READ(ANSLU, 3) I
IF (ECHOLU.NE.O) WRITE(ECHOLU, 3) I
IF (I.NE.YES) GOTO 130

RTYPE = 1

i1

Get axis increment

IF (PLU.NE.O) WRITE(PLU, 14)
READ(ANSLU, *) HINC

IF (ECHOLU.NE.O) WRITE(ECHOLU, 5) HINC
&k

% Get default values

CALL DFAUL(HSTART, VSTART, VSTOP)

HINC = DABS(HINC)

VINC = DSIGN(HINC, VSTOP-VSTART)
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Ask if want reflection of default region
IF (PLU.NE.O) WRITE(PLU,15)

READ(ANSLU, 3) I

IF (ECHOLU.NE.O) WRITE(ECHOLU, 3) I

IF (I.EQ.YES) HINC = - HINC

GOTO 190

Ask if want to check a specified region
IF (PLU.NE.O) WRITE(PLU, 16)
READ(ANSLU, 3) I
IF (ECHOLU.NE.O0) WRITE(ECHOLU, 3) I
IF (I.NE.YES) GOTO 160

RTYPE = 2

Get horizontal axis range and increment

IF (PLU.NE.O) WRITE(PLU, 18)

READ(ANSLU,*) HSTART, HSTOP

IF (HSTOP.LE.HSTART) GOTO 140

IF (ECHOLU.NE.O) WRITE(ECHOLU, 5) HSTART, HSTOP
IF (PLU.NE.O) WRITE(PLU, 20)

READ(ANSLU,*) HINC

IF (ECHOLU.NE.O) WRITE(ECHOLU, 5) HINC

Get vertical axis range and increment

IF (PLU.NE.O) WRITE(PLU, 22)

READ(ANSLU,*) VSTART, VSTOP

IF (VSTOP.GE.VSTART) GOTO 150

IF (ECHOLU.NE.O) WRITE(ECHOLU, 5) VSTART, VSTOP
IF (PLU.NE.O) WRITE(PLU,24)

READ (ANSLU,*) VINC

IF (ECHOLU.NE.O) WRITE(ECHOLU, 5) VINC

Make sure correct sign on HINC
HINC = DSIGN(HINC, HSTOP-HSTART)

Make sure correct sign on VINC
VINC = DSIGN(VINC, VSTOP-VSTART)
GOTO 190

Ask if want to check just one point
IF (PLU.NE.O) WRITE(PLU, 26)
READ(ANSLU,3) I

IF (ECHOLU.NE.O) WRITE(ECHOLU, 3) I
IF (I.NE.YES) GOTO 190

RTYPE = 3

QUEST
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F Get coordinates of point
IF (PLU.NE.O) WRITE(PLU, 28)
READ (ANSLU,*) HSTART, VSTART
IF (ECHOLU.NE.O) WRITE(ECHOLU, 5) HSTART, VSTART

HINC = .01
HSTOP = HSTART + .005
VINC = -.01

VSTOP = VSTART - .005
ok
Fk Ask if want to trace algorithm
IF (PLU.NE.O) WRITE(PLU, 30)
READ(ANSLU,3) I
IF (ECHOLU.NE.O) WRITE(ECHOLU, 3) I

IF (I.EQ.YES) TRACE = 1
*%

Fesk
190 GOTO 100
s
e Get value of rho
200 RHO = 1,
IF (PLU.NE.O) WRITE(PLU, 32)
READ(ANSLU,*) RHO
IF (ECHOLU.NE.O) WRITE(ECHOLU, 5) RHO
IF (RHO.LT.1.) RHO = 1,

i

RETURN
Fodke

3 FORMAT (A1)

5 FORMAT(F12.7,1X,F12.7)

10 FORMAT ('ROUNDOFF OR TRUNCATION ? (R or T)')

12 FORMAT('DO YOU WANT TO USE DEFAULT REGION ?')

14 FORMAT('ENTER GRID INCREMENT')

15 FORMAT('DO YOU WANT TO CHECK THE REFLECTION',
& ' OF THE DEFAULT REGION ?')

16 FORMAT('DO WANT TO CHECK A SPECIFIC REGION ?')

18 FORMAT ('ENTER HORIZONTAL AXIS RANGE')

20 FORMAT ('ENTER HORIZONTAL AXIS INCREMENT')

22 FORMAT ('ENTER VERTICAL AXIS RANGE')

24 FORMAT ('ENTER VERTICAL AXIS INCREMENT')

26 FORMAT('DO YOU WANT TO CHECK JUST ONE POINT 2"

28 FORMAT ('ENTER COORDINATES OF POINT')

30 FORMAT('DO YOU WANT A TRACE ?')

32 FORMAT('ENTER RHO')

42 FORMAT("SAT., TRI., OR TWO'S COMPL. ? (S, Tor C)™

END
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Fefededcdiehidvioidvieioiivioiolioieleiedcldeioidelolcdededoleioicidoloioioedoioidoioiciodioloidoioilolok
Fk Fk
Fk Fk
ok WINIT wd
% ok
Fke wke
Fekdedeivicioioioioivieidicloiviiololeloleiioicicielloivdololioioiivioieiniioiedolioiciioiioloiooloiollok
die
Fk
' Returns the initial vertex set
Fk
F% INPUTS: EDIM - Dimension of system
Fik
F% OUTPUTS: WZERO =~ Initial vertex set
wde NZERO - Number of vertices in WZERO
wk
Fk

SUBROUTINE WINIT(EDIM, WZERO, NZERO)
e
Fike

DOUBLE PRECISION WZERO(2,10)
DOUBLE PRECISION ZDATA(2,10)
INTEGER EDIM, NZERO, I, J
DATA ZDATA/1.DO, 0.DO,
& 0.DO, 1.DO/

11

NZERO = 2
DO 210 I=1,EDIM
DO 210 J=1,NZERO
210  WZERO(I,J) = ZDATA(I,J)
RETURN
END

WINIT
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C. Program to Find the Boundary of a Region: BORDR

Directory
Page
BORDR 219
CALPT 227
BOUND 230
BFUNC 234
WINIT 236
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BORDR

FTN4,L,Y
$EMA (DAT)

%%
*k

PROGRAM BORDR(4, 100)

dedededededededrdedodododede e dbododo dededededodoicdede e dededniededodedvivivioioiviiolideldokivivlcleloiodelede
Fdefoddoetdedrhdkdddinnr b b ddnthdededdoiiiehdedededeiededeichdioiviviiokiviviioliolidioleide

*% %%
F THIS PROGRAM SEARCHES FOR A BORDER OF A 2-D ik
ke CLOSED REGION. ' i
F¥ ek

defedefededeiedededododeoivhivioidiivivicidviokdvivivirivleioiidcioickdoivivividoldolehfrdeiofededeioddoh ek
dededeiededededededededeioiohdeidviciivhdddvivdcioifoidededoiviviodolfedoioioivileieloidclelivicleidviodoiod ek

FILE: "BORDR

PSEUDO~CODE :

Set search accuracy
Initialize search points and search-axis

Find initial boundary
If not found
Set error to "yes" and print message
Else
Set initial boundary point
Set previous boundary point so that gradient
will be determined correctly

Set first-time flag to "yes"

Do while not done and no error
Print boundary coordinates
Calculate gradient
Save previous inner and boundary(outer) point
Calculate next search points

Find boundary between two search points

If status = done then DONE = "yes"
If both search points outside
Try modified calculation of predicted inner and
outer search points. The inner point is
predicted closer to boundary. This is done
for sharp corners, to allow us to "walk"
to corner as far as possible.

S S S S S S S S S S S S S SRR EEEEEEEE NS Y
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BORDR

Find boundary between two search points

If both search points outside or inside

Change search-axis

Calculate next search points :

Find boundary between two search points

If boundary not found
Set error to "yes" and print message

Else
Set previous boundary point so that gradient
will be determined correctly

Else if search points reversed (inner one is
outside and outer one is inside)
Set error to "yes" and print message

If first-time flag is "yes"
Set first-time flag to "no"
Else
If boundary point close to initial boundary
Set DONE to "yes"

End (of do while)

Print point (0,0) to signal end of points

VARTABLES

SAXIS - Search-axis. Search for boundary along a
line parallel to this axis.
1 +y axis 3 -~y axis
2 +x axis 4 -x axis
SACC - Desired search accuracy
IPOINT - Inside search point

OPOINT - Outside search point
BPOINT - Boundary point
BSTAT - Status of boundary search routine

0 - boundary found

1 - both search points outside

2 - both search points inside

3 - search points reversed(inside one was
outside and outside one was inside)

4 - done

DELX -~ Change in x from previous boundary point
DELY =~ Change in y from previous boundary point
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ok BPREV - Previous boundary point
ere BINIT - Initial boundary point

dede

% DONE -~ Done flag for big do while loop O=not done
ke ERR - Error flag 0=no error l=error

Fok

ey OUTLU - Output logical unit # where boundary

¥k points are printed

Fke PRTLU - Error mesages are printed here

*de

PARMS - Array of parameters from the run string.
The first one is logical unit # of file
in which to place the boundary data. The
other parameters are passed to BFUNC and
LINIT.

PARMS(2) ~ Quantization nonlinearity
0 - truncation
1 - roundoff
PARMS(3) ~ Overflow nonlinearity
0 - zeroing or saturation
1 - triangular
2 - two's complement
PARMS(4) - Type of constructive algorithm boundary
0 - stability boundary
1 - finiteness criteria boundary
PARMS(5) ~ Unspecified

EEEESEEEEE SRR RN S S

INTEGER SAXIS, BSTAT, DONE, ERR, PARMS(5), I

& OUTLU, PRTLU, FIRST, TRACE

DOUBLE PRECISION IPOINT(2), OPOINT(2), BPOINT(2),
& BPREV(2), DELX, DELY, BINIT(2), IPREV(2),
& SACC, SINC, IINIT(2), OINIT(2)

i

Fddrieddvicieleiviciclolivioidoicloicioieicivleioolioiniokieiniotsteicioioieloloicleioideieioloieioidoleiel

THIS PORTION IS A DEVIATION FROM STANDARD FORTRAN

Get parameters passed in from run string
CALL RMPAR(PARMS)

i ¥fii
iy 444

Set output logical unit numbers
OUTLU = PARMS(1)
PRTLU = 6

i
i

*mmmmmmmmmmm*mmm
ke

BORDR
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1%

3
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Set trace flag
TRACE = 0

Set search accuracy
SACC = .005
SINC = .020

Set initial search points and search axis

CALL LINIT(OUTLU, PARMS(2), IINIT, OINIT, SAXIS)

Initialize search points
IPOINT(1) = IINIT(1)
IPOINT(2) = IINIT(2)
OPOINT(1) = OINIT(1)
OPOINT(2) = OINIT(2)

Find initial boundary

CALL BOUND(IPOINT, OPOINT, SACC, PARMS(2), TRACE,

& BPOINT, BSTAT)

If boundary not found, set ERR and print message

IF (BSTAT.EQ.0) GOTO 130
ERR = 1
WRITE (PRTLU, 25) (IINIT(I), I=1,2),
& (OINIT(I), I=1,2)
GOTO 150

Else
Set initial boundary point
BINIT(1) = BPOINT(1)
BINIT(2) = BPOINT(2)

Set previous boundary so that gradient is

determined correctly
BPREV(1) = BPOINT(1)
BPREV(2) = BPOINT(2)
IF (SAXIS.EQ.1) BPREV(1)
IF (SAXIS.EQ.2) BPREV(2)
IF (SAXIS.EQ.3) BPREV(1)
IF (SAXIS.EQ.4) BPREV(2)

BPOINT(1)
BPOINT(2)
BPOINT(1)
BPOINT(2)

Do while not done and no error

- SINC
- SINC
+ SINC
+ SINC

BORDR
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BORDR
150 IF ((DONE.NE.O).OR.(ERR.NE.0)) GOTO 400
%k

% Print boundary coordinates
WRITE(OUTLU, 5) BPOINT(1), BPOINT(2)
IF (TRACE.NE.O) WRITE(6,5) BPOINT(1), BPOINT(2)
)
Fie Calculate gradient
DELX = BPOINT(1) - BPREV(1)
DELY = BPOINT(2) - BPREV(2)
IF (TRACE.NE.O) WRITE(6,30) DELX, DELY
30 FORMAT(' GRADIENT:', 2F10.4)

ii

Save previous inner point and boundary (outer) point
IPREV(1) = IPOINT(1)

IPREV(2) = IPOINT(2) -

BPREV(1) = BPOINT(1)

BPREV(2) = BPOINT(2)

i1

Calculate next search points
CALL CALPT(BPOINT, DELX, DELY, SINC, SACC, SAXIS, 0,
& IPREV, IPOINT, OPOINT)

ek
wk Find boundary between two search points
CALL BOUND(IPOINT, OPOINT, SACC, PARMS(2), TRACE,
& BPOINT, BSTAT)

i

If status = done then DONE = "yes"
IF (BSTAT.NE.4) GOTO 160

DONE = 1

GOTO 300

Else if both search points outside
IF (BSTAT.NE.1l) GOTO 165

o

Try modified calculation of predicted inmer and
outer points. The inner point is not predicted
so far away. This is done for sharp corners, to
allow us "walk" to corner as far as possible.

CALL CALPT(BPREV, DELX, DELY, SINC, SACC, SAXIS,

& 1, IPREV, IPOINT, OPOINT)

Tiificiy

i3

Now try to find boundary
CALL BOUND(IPOINT, OPOINT, SACC, PARMS(2), TRACE,
& BPOINT, BSTAT)

Now if both search points both inside or outside,
try to turn corner.

1i%
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BORDR

fuy
(o )
w

IF ((BSTAT.NE.1).AND.(BSTAT.NE.2)) GOTO 195

o+
+

NOW WE ARE TRYING TO TURN CORNER

Change search-axis

If both outside, rotate clockwise
IF (BSTAT.EQ.1) SAXIS = SAXIS + 1

T ffiiiiic

If both inside, rotate counterclockwise
IF (BSTAT.EQ.2) SAXIS = SAXIS + 3

IF (SAXIS.GT.4) SAXIS = SAXIS - &
IF (TRACE.NE.O) WRITE(6,35) SAXIS
35 FORMAT(' SEARCH AXIS IS NOW ',I2)

Fk Calculate next search points
Fk IF (BSTAT.EQ.1) GOTO 175

Fk OPOINT(1) = BPREV(1)

*ke OPOINT(2) = BPREV(2)

*k IPOINT(1) = OPOINT(1)
IPOINT(2) = OPOINT(2)

GOTO 178

Sifd

5 IPOINT(1)
IPOINT(2)
OPOINT(1) = IPOINT(1)
OPOINT(2) = IPOINT(2)

178 IF (SAXIS.EQ.1) OPOINT(2)

IF (SAXIS.EQ.2) OPOINT(1)

IF (SAXIS.EQ.3) OPOINT(2)

IF (SAXIS.EQ.4) OPOINT(1)

IPREV(1)
IPREV(2)

IPOINT(2)+4.DO*SINC
IPOINT(1)+4.DO*SINC
IPOINT(2)-4.DO*SINC
IPOINT(1)-4.DO*SINC

1%

Find boundary between two search points
CALL BOUND(IPOINT, OPOINT, SACC, PARMS(2),
& TRACE, BPOINT, BSTAT)

If boundary not found
Set error to "yes" and print message
IF (BSTAT.EQ.0) GOTO 190
ERR = 1
WRITE(PRTLU, 10) (IPREV(I), I=1,2),
& (BPREV(I), I=1,2)
GOTO 200
wd Else set previous boundary so that gradient is

114
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BORDR

not determined by previous points
BPREV(1) = BPOINT(1)
BPREV(2) = BPOINT(2)

IF (SAXIS.EQ.1) BPREV(1)
IF (SAXIS.EQ.2) BPREV(2)
IF (SAXIS.EQ.3) BPREV(1)
IF (SAXIS.EQ.4) BPREV(2)
GOTO 200

BPOINT(1) - SINC
BPOINT(2) - SINC
BPOINT(1) + SINC
BPOINT(2) + SINC

Else
If search points reversed

Set error to "yes" and print message
IF (BSTAT.NE.3) GOTO 200

ERR =1
WRITE (PRTLU, 20) (IPOINT(I),I=1,2),
& (OPOINT(I),I=1,2)
CONTINUE

If first time, set flag to indicate not first time
IF (FIRST.NE.O) GOTO 220

FIRST = 1

GOTO 240

Else
If boundary point close to initial boundary
Set DONE to "yes"
Print initial boundary coordinates
IF(((BPOINT(1)-BINIT(1))#*%2
& + (BPOINT(2)-BINIT(2))%%2).GT. (1.4%(SINC**2)))
& GOTO 240
DONE = 1 .
WRITE(OUTLU, 5) BINIT(1), BINIT(2)
CONTINUE

' GOTO 150
End (of do while)

Print point (0,0) to signal end of points
CONTINUE

WRITE(OUTLU, 5) 0.DO, 0.DO

STOP
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FORMAT(1X, 2F10.5)

FORMAT(' COULD NOT TURN CORNER ', 2(2F10.4,4X))
FORMAT(' SEARCH POINTS REVERSED ', 2(2F10.4,4X))
FORMAT(' INITIAL SEARCH POINTS INCORRECT '

& 2(2F10.4,4X))

END

BORDR
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dedelededeiedoiedodedededeivioivioieitdicidoivivicivioielodelvicicleiodelededodedeiofledokdedoiiohichedodciok s

ok doke
ok CALPT *k
deke ke

This routine calculates the next search points to
use, based on the predicted next boundary point.

INPUTS: BPOINT - Last boundary point
DELX - Change in x from prev boundary pt
DELY - Change in y from prev boundary pt
SINC - Search increment
SACC - Search accuracy NOT USED
SAXIS - Search axis
MFLAG - Modified calculation flag
0 - inner search point predicted
same manner as outer search pt
1 - inner search point predicted
same as last inner search point
IPREV - Last inner search point

OUTPUTS: IPOINT - Inner search point to use to find
next boundary point.

OPOINT - Quter search point to use to find
next boundary point.

EEEE S SRR S SRR EEEEEEEEEE Y

SUBROUTINE CALPT(BPOINT, DELX, DELY, SINC, SACC,

& SAXIS, MFLAG, IPREV, IPOINT, OPOINT)
ok
st
INTEGER SAXIS, MFLAG
DOUBLE PRECISION BPOINT(2), DELX, DELY, SINC,
& IPOINT(2), OPOINT(2), IPREV(2),
& PRED, IBND, OBND, SACC
ik
ok
bt Set how far away from the predicted boundary the
i inner and outer points are put
OBND = 2.0D0 * SINC
IBND = 2.0D0 * SINC
)
IF (SAXIS.GT.4) SAXIS =1
wode
H Do case SAXIS

GOTO (100, 200, 300, 400) SAXIS

CALPT
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#
*i
dededededoieledofoideiodedeioioloioiclololeioioioldol i
Wik +Y search axis Fedvde

Fedededeirioieiioioioleiioiioiviceieicheeiclsiolind
100 IPOINT(1) = BPOINT(1) + SINC

OPOINT(1) = IPOINT(1)
o
ok Predicted value
PRED = BPOINT(2) + SINC*DELY/DABS (DELX)
Fk
OPOINT(2) = PRED + OBND
IPOINT(2) = PRED ~ IBND
IF (MFLAG.NE.O) IPOINT(2) = IPREV(2)
GOTO 500
defe
sete
dededededededededededoioteioioiodoiedoivioieidcdodededede
wk +X search axis deleke

dededeicdeiciolioliolivioioloioiioiiolodoieioiloick
200 IPOINT(2) = BPOINT(2) - SINC

OPOINT(2) = IPOINT(2)
sk
%ok Predicted value
PRED = BPOINT(1) + SINC*DELX/DABS(DELY)
sk
OPOINT(1) = PRED + OBND
IPOINT(1) = PRED - IBND
IF (MFLAG.NE.0) IPOINT(1) = IPREV(1l)
GOTO 500
dode

Foke
dededededededeioiohdeioidedeieioieioiioioieiofoided

*k -Y search axis deiede
dededetededededoidededodotodededoioiedoloiviededededcied

300 IPOINT(1) = BPOINT(1) - SINC

OPOINT (1) = IPOINT(1)
Fede
w Predicted value
PRED = BPOINT(2) + SINC*DELY/DABS(DELX)
Fk
OPOINT(2) = PRED - OBND
IPOINT(2) = PRED + IBND
IF (MFLAG.NE.0) IPOINT(2) = IPREV(2)
GOTO 500
Feke
ok
et

CALPT
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CALPT
| dek
deicleicicioiioioliviieloiieiokdelohdokdciohoiodeke
. -X search axis drkde

dedededededridedofeioiedoloicloleivioieeioloicioloioik
400 IPOINT(2) = BPOINT(2) + SINC

OPOINT(2) = IPOINT(2)
Jee
*k Predicted value
PRED = BPOINT(1) + SINC*DELX/DABS(DELY)
Fk
OPOINT(1) = PRED - OBND
IPOINT(1) = PRED + IBND
IF (MFLAG.NE.O) IPOINT(1) = IPREV(1)
GOTO 500
Fk
Fedke
500 CONTINUE
RETURN
END
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BOUND
mmmmmmmmﬁmmmmm
»*%k ek
sk BOUND b
L ek

mm*mmmmmmmmmﬂﬁmm

Finds the boundary between the two given search
points to a given accuracy. This subroutine calls an
integer function subprogram BFUNC that returns a 0 if
point is inside the region, a 1 if it is outside the
region or on the boundary and a 2 if at end of
boundary.

INPUTS: IPT - Inside search point
OPT - Outside search point
SACC - Search accuracy
PARMS -~ Array of parameters from the run
string to be passed to BFUNC
TRACE - Set to nonzero value if want to trace

OUTPUTS : BPOINT - Boundary point
BSTAT - Status of this routine
0 - boundary found
1 - both search points outside
2 - both search points inside
3 - search points reversed(inside
one was outside and outside
one was inside)
4 - done
IPT,OPT- Last values of these points

PSEUDO-CODE

Set axis-flag according to search axis
Get initial status of search points

If inner-status="inside" and outer-status="outside"
Do while difference between inner and outer points
is greater than accuracy
Calculate midpoint
Get status of midpoint
If outside, outer point = midpoint
Else inner point = midpoint
End
Boundary-status = "found"

PiFFFEEREREIEIEEES TIIIIIIEIEEELSLILEILILILLE 1144
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BOUND

Else
If status of either search points is "at end of
boundary" then Boundary-status = "done"
Else
If both search points inside
Boundary-status = "both inside"

Else
If both search points outside
Boundary-status = "both outside"
Else
Boundary-status = "reversed"

SUBROUTINE BOUND(IPT, oPT, SACC, PARMS, TRACE,
& BPOINT, BSTAT)

INTEGER PARMS, BSTAT, ISTAT, OSTAT, MSTAT, AXIS, TRACE
DOUBLE PRECISION IPOINT(2), OPOINT(2), SACC,BPOINT(2),
& ' IPT(2), OPT(2), MPT(2)

This is a function subprogram
INTEGER BFUNC

Set axis-flag according to search axis
AXIS =1
IF (DABS(IPT(1)-OPT(1)).LE.1.D-7) AXIS = 2

Get initial status of search points

ISTAT = BFUNC(IPT(1), IPT(2), PARMS)

OSTAT = BFUNC(OPT(1), OPT(2), PARMS)

IF (TRACE.NE.O) WRITE(6, 5) IPT(1),IPT(2),ISTAT,
& OPT(1),0PT(2),0STAT

5 FORMAT(' SEARCH POINTS:', 2(2F10.4,I5))

If inner-status="inside" and outer-status="outside"
IF ((ISTAT.NE.O).OR.(OSTAT.NE.I)) GOTO 200

Do while difference between inner and outer points
is greater than accuracy
IF (DABS(IPT(AXIS)-OPT(AXIS)).LE.SACC) GOTO 180

Calculate midpoint

MPT(1) = IPT(1)

MPT(2) = IPT(2)

MPT(AXIS) = (IPT(AXIS) + OPT(AXIS)) / 2.DO
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miird

0
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Get status of midpoint

MSTAT = BFUNC(MPT(1), MPT(2), PARMS)
WRITE(6, 10) MPT(1), MPT(2), MSTAT
FORMAT(' MIDPOINT:', 2F10.4, IS)

If outside, outer point = midpoint
IF (MSTAT.EQ.0) GOTO 160

OPT(1) = MPT(1)

OPT(2) = MPT(2)

GOTO 170
Else inner point = midpoint
IPT(1) = MPT(1)
IPT(2) = MPT(2)
GOTO 150
End
CONTINUE

Boundary-status = "found"
BSTAT = 0

Boundary-point = last outer-point
BPOINT(1) = OPT(1)

BPOINT(2) = OPT(2)

GOTO 250

Else
If status of either search points is "at end of
boundary" then Boundary-status = "done"
IF ((ISTAT.NE.2).AND.(OSTAT.NE.2)) GOTO 210
BSTAT = &4

GOTO 250
Else
If both search points inside
Boundary-status = "both inside"
IF ((ISTAT.NE.O0).OR.(OSTAT.NE.0)) GOTO 220
BSTAT = 2
GOTO 250
Else
If both search points outside
Boundary-status = "both outside"
IF ((ISTAT.NE.1).OR.(OSTAT.NE.1)) GOTO 230
BSTAT = 1

GOTO 250

BOUND
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BOUND

Wk
*% Else
ke Boundary-status = "reversed" -
230 BSTAT = 3
wok
ke
we
250 CONTINUE

RETURN

END
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BFUNC
Fededeiededededededodedodededededededodoedededododedoiviodededededodedeiodedododedeiodedotedededede e devedtededededede
%% L
% BFUNC #k
%% L)

Fededeledededededodeivioiodolvivichiededoiolviodohiedoiiciohiokdeloidofdviciiohiolnkdeieloiciok ko dekedoiefede

This function subprograh is the interface between
the border~-determining program and all of the
Brayton-Tong subroutines.

INPUTS: X, Y - Coordinates of point
PARMS - Parameters passed in by run string
PARMS(1)- type of quantizer
0 truncation
1 roundoff
PARMS(2)- type of overflow
0 zeroing or saturation
1 triangular
2 two's complement
PARMS(3)- type of boundary
0 stability
1 finiteness criteria

OUTPUTS: BFUNC - Status of point
0 - inside region
1 - outside region
2 - at end of boundary

INTEGER FUNCTION BFUNC(X, Y, PARMS)

T: OFPiYEEGGREIIEYEOEOIGIIIIIGEG®GLIGY

DOUBLE PRECISION X, Y, EMAT(3,3,16), WSTAR(2,256),

& WZERO(2,10), A1, A2, GAIN, GAINL, RHO
INTEGER PARMS(4), ROUND, NUMEXT, EDIM, NZERO, NSTAR,

& SFLAG, OVRFLW, MXVRT

This is a function subprogram
INTEGER DNCHK

ii 1%

Al
A2

X
Y

i

Check if done
BFUNC = DNCHK(Al, A2)

i
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BFUNC

If not done, check status of point
IF (BFUNC.EQ.2) GOTO 300

Set quantizer, overflow gain limits
ROUND = PARMS(1)
OVRFLW= PARMS(2)

GAIN = 1.D0
IF (ROUND.EQ.1) GAIN = 2.DO

GAINL = 0.DO
IF (OVRFLW.EQ.1) GAINL = -1.D0/3.D0
IF (OVRFIW.EQ.2) GAINL = -1.D0

Set RHO to check for asymptotic stability
RHO = 1.0000001D0

Other initialization
EDIM = 2
MXVRT = 2

Get initial convex hull
CALL WINIT(EDIM, WZERO, NZERO)

Get set of extreme matrices
CALL GTMAT(Al, A2, GAIN, RHO, EMAT, NUMEXT,
SFLAG, GAINL)

If checking stability boundary, do constructive
algorithm
IF (PARMS(3).NE.0) GOTO 130
CALL BRAYT(EMAT, EDIM, NUMEXT, WZERO, NZERO,
WSTAR, NSTAR, SFLAG, MXVRT, 0)
GOTO 140

Else check eigenvalues of extreme matrices
CALL EIGEN(EMAT, EDIM, NUMEXT, SFLAG, 0)
CONTINUE

BFUNC = 0

If SFLAG <> 0 then set BFUNC to 1
IF (SFLAG.NE.O) BFUNC = 1
CONTINUE

RETURN

END
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WINIT
Fedcicdiceivickdoieieldeiorioiivichicioicinloioiolnivielodeioldoioiioioieleioiololoiioieleivicieloidokoik
e dede
wk WINIT wdke
w¥k ok
Feidedeledekideiodedoiviolloidoicioirioioiiioleiioiololdoleloiiiet-doloidoiokdoiiollon dedolededokoiodoed
wk
% Returns the initial vertex set
wk

w¥ INPUTS: EDIM - Dimension of system
% OUTPUTS: WZERO =~ Initial vertex set

Wk NZERO - Number of vertices in WZERO
Hk
*ik

SUBROUTINE WINIT(EDIM, WZERO, NZERO)
*ke
Fode

DOUBLE PRECISION WZERO(2,10)

DOUBLE PRECISION ZDATA(2,10)

INTEGER EDIM, NZERO, I, J

DATA ZDATA/1.DO, 0.DO,

& 0.D0, 1.DO/

Hk
ok

NZERO = 2

DO 210 I=1,EDIM
DO 210 J=1,NZERO
210  WZERO(I,J) = ZDATA(I1,J)
RETURN
END
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D. Subroutines that are Unique to Each
Digital Filter Structure

l. Direct form with one quantizer

Directory

Page
GETLB 239
DESCR 240
DFAUL 241
GTEND 242
GTMAT 243
LINIT 245
DNCHK 247
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FTN4,Y,L
*k

*k
dedvdedededcirioloirivhelvivioloieiolvicieioieiieividoidoloiciolioiioiedoioioioinioloioteiododokdoledodededodede
Fhdeeleddoiedeldohinliohiiediehivioleiiohdeiciciviololioiedololoodivkdoiciokde ootk dokdodoioieds

*% ok
%% ke
e DIRECT FORM -- ONE QUANTIZER e
¥ %k
e ki
% deke
#%  THIS FILE CONTAINS THE ROUTINES FOR USING THE dee
#% BRAYTON-TONG ALGORITHM PROGRAMS TO FIND THE e
#% STABILITY REGIONS FOR A SECOND ORDER DIRECT FORM e
#% DIGITAL FILTER WITH ONE QUANTIZER. e
wi ok
Fededededeodiodedeiviieodedeiodotfoddeleledoioidolofofioiidoiciictdeloh ik dokdeleiioicictdoleiek
Fdehdrdedrioedededchrdviedoiododooiodededoieiohdvicioinieioivivioieleledodeiotededeieoieoieledeioioiciodedotodede
E

%

#*  FILE "BRAYA

F*k

ok

%o
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Feddedededeieielrivleloieiileloioiioiviviioivioicloiedoiololelolololeiokdoiiviololotolrleloidei ek deledototelode

*k e
L) Joke
i GETLB ok
L uk

%%

Fk
delriedrivieivieiedviviioidvloioloiolokiioicicleiviviolloioiokioloiciokdoleloieioioiodoiodoiolofotedoleedede
*k

%

% Returns the name of this program version

*%

e

DOUBLE PRECISION FUNCTION GETLB(I)

Fk
dede
DOUBLE PRECISION LABEL
DATA LABEL/S8HBRAYA /
ok
GETLB = LABEL
RETURN
END
Fte

GETLB
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H**mmmmm*mmwmmmmm
e
%k
it DESCR
%%
Joie

Wmmmm*mmmmm

Tiiii

Prints any additional description of program version
INPUT: LU - Device number of printer

SUBROUTINE DESCR(LU)

+% ffiiig

WRITE(LU, 1)
RETURN

1 FORMAT(' CANONICAL FORM DIGITAL FILTER WITH ONE',
& ' QUANTIZER ')
END

DESCR
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241

fede
sk
DFAUL ke
%%
ke

Supplies the default values for the triangle in the
parameter plane.

OUTPUT: HSTART - Start of hor range to check stability
VSTART - Start of ver range to check stability
VSTOP - End Of " " " " 1"

SUBROUTINE DFAUL(HSTART, VSTART, VSTOP)

DOUBLE PRECISION HSTART, VSTART, VSTOP

HSTART = 0.DO
VSTART = 1.DO
VSTOP = -1.DO
RETURN

END

DFAUL
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|
i
%

GTEND

R i
Piiid

i

Returns the horizontal stop value for the default
region, given the vertical coordinate.

DOUBLE PRECISION FUNCTION GTEND(VERT)

DOUBLE PRECISION VERT

T If %444

GTEND = 1.D0 - VERT + 1.D-12
RETURN
END

wk
dede
ek

GTEND

www.manaraa.com



243

dededeieivieiedeieiodoiivioiolioiolivioidedoieiodiiokichddoiokiolivloiokdoleleioidololoidelodokdcloioi ks
Fk wk
ke woke
Fk GTMAT ke
Fke %
Fe Foke
Fdededesrkeidivioidoiolioiiololoioiivioloiodicioidoiioiciokdeieledoioioiololodoiiolotoidolo ok doieiedede
ik
o
ek Generates the set of extreme matrices
Fde
ik INPUTS: Al,A2 - Coordinates of point for which set
* is generated
Wk GAIN - Upper gain of quantizer nonlinearity
#k GAINL - Lower gain of overflow nonlinearity
w RHO - All of the extreme matrices will
Wk be multiplied by this value to get
% the asymptotic stability of the
% system.
wok
ok OUTPUTS: EMAT -~ Set of extreme matrices
Fk NUMEXT - Number of extreme matrices
i SFLAG -~ Always set to O since the filter can
Wk realize any parameters.
Fke
*k
SUBROUTINE GTMAT(Al, A2, GAIN, RHO, EMAT, NUMEXT,
& SFLAG, GAINL)
Foke
die
DOUBLE PRECISION A1, A2, GAIN, RHO, EMAT(3,3,4)
DOUBLE PRECISION GAINL
DOUBLE PRECISION SLOPE(4,2), Gl1, G2, G3, G4
INTEGER NUMEXT, SFLAG, I, J, K
Fok
ik
*k Clear the flag
SFLAG = 0
deke
i Set the number of extreme matrices
NUMEXT = 2
Fk
ik Set up the slope limits on the nonlinearity
DO 105 I = 1,4
SLOPE(I,1) = GAIN
105 SLOPE(I,2) = GAINL
*k
*%

GTMAT

www.manaraa.com



244

GTMAT

R Set up extreme matrices
DO 110 I = 1, NUMEXT

*de
K=1-1
G1 = SLOPE(1, MOD(K,2) + 1)
ok
EMAT(1,1,I) = G1 * Al
EMAT(1,2,I) = G1 * A2
EMAT(2,1,I) = 1.DO
EMAT(2,2,I) = 0.DO
110  CONTINUE
fole
Kde
DO 170 K = 1, NUMEXT
DO170 J =1, 2
DO170 I =1, 2
170  EMAT(I,J,K) = RHO * EMAT(I,J,K)
%%
ok
RETURN
END
sk
ok
*k
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LINIT

Sets up initialization for the boundary search
program.

INPUTS: LU - Logical unit number of output file
PARMS - Parameters passed in by run string
PARMS(1)- type of quantizer
0 truncation
1 roundoff
PARMS(2)~- type of overflow
0 none, zeroing, satur
1 triangular
2 two's complement
PARMS(3)- type of boundary
0 stability
1 eigenvalues < 1

OUTPUTS: IINIT - Initial inside search point

OINIT - Initial outside search point
SAXIS - Initial search axis

SUBROUTINE LINIT(LU, PARMS, IINIT, OINIT, SAXIS)

1§ $iiPiifEPEIOGPOOGTIIIEIFOTIOEIGGGY

INTEGER LU, PARMS(4), SAXIS, I
DOUBLE PRECISION IINIT(2), OINIT(2)

deke

Fodke

L Print description
WRITE(LU, 5) (PARMS(I), I=1,4)

wk

i Print data range (depending on quantizer)
IF (PARMS(1).EQ.0) WRITE(LU, 10) 0.0, 2.0, ~1., 1.
IF (PARMS(1).EQ.1) WRITE(LU, 10) 0.0, 1.0, -.5, .5

)

% Print symmetry ( 1 = symmetric about y axis)
WRITE(LU, 15) 1

Wk
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ok
*k
dede

246

Set initial search points and search axis
IINIT(1) = 0.00D0

OINIT(1) = 1.50D0
IINIT(2) = 0.00DO
OINIT(2) = IINIT(2)
SAXIS = 2

RETURN

FORMAT ('DIRECT FORM, ONE QUANTIZER ',4I5)
FORMAT (4F10.4)

FORMAT(I2)

END

LINIT
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Firhdeloilivkdoleioidiiicioiohicinivioioloiioleleiovioioieicdoiieivioiololiolionlolodoick ok deloiclok
F¥e *%
sk *k
it DNCHK Fk
ok Fk
*ke Fok
Fdeddeivieicirioieddoichickiohiieioiiciioinivioinivionioiivickichioiololoicioiivinilohdcloiciieickiok
ok

Fooke

Fk

Wi Checks if we are done with border searching

wdk program. Since these plots are all symmetric

ok about Y axis, we are done when X < 0.

Foke

**

bl INPUTS: X, Y - Coordinates of point

Hk

*% OUTPUT: DNCHK - '0' if not done

ok '2' if done

Fk

woke

I 1%

INTEGER FUNCTION DNCHK(X, Y)

DOUBLE PRECISION X, Y

DNCHK = 0

IF (X.LT.0.DO) DNCHK = 2
RETURN

END

DNCHK

www.manaraa.com



248

2. Direct form with two quantizers

o AgLib

GETLB

.DESCR

DFAUL

GTEND

GTMAT

LINIT

DNCHK

Directory
Page
250
251
252
253
254
256

258
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FTN4,Y,L
sk

ek
delededeiedvdvkdoleddeleiviokivivkdedvivkioiniokichivividololiviolioieiotoiioiolofvioilol ol ieloiiicl
delededviciededeivivkdoloivivioivivkdiviokteioiioloiohividodoiviviiiohichiieteloloioliloiioldloiniiok s

ok %k
¥k s
ke DIRECT FORM -- TWO QUANTIZERS ke
e ok
Jede %%
Jeke &k
**  THIS FILE CONTAINS THE ROUTINES FOR USING THE e
¥k  BRAYTON-TONG ALGORITHM PROGRAMS TO FIND THE e
% STABILITY REGIONS FOR A SECOND ORDER DIRECT FORM e
*% DIGITAL FILTER WITH TWO QUANTIZERS. e
*ede ok

FILE "BRAYB
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GETLB
deleideielekivioiiiofiviololeivividleloioickiokdvioideioleiioioloiodiiokicioldoiedoleirioieioiviciicioioiok
Fk Fik
%k weke
wde GETLB i
weke *¥
Feie dok
dededcdeivieioviolletoivioiviioioioiicioideioioiioiiioiioioiniviooiioiiololdoeioidcioiodcloioideioidod
e
F
% Returns the name of this program version
F¥e
wode

DOUBLE PRECISION FUNCTION GETLB(I)
sk
wk
DOUBLE PRECISION LABEL
DATA LABEL/S8HBRAYB [/
woke
GETLB = LABEL
RETURN
END
Fk
ke
*¥
e
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Prints any additional description of program version

INPUT:

LU - Device number of printer

SUBROUTINE DESCR(LU)

WRITE(LU, 1)

RETURN

FORMAT(' CANONICAL FORM DIGITAL FILTER WITH TWO',

&
END

' QUANTIZERS')

DESCR
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Supplies the default values for the triangle in the
parameter plane.

OUTPUT: HSTART - Start of hor range to check stability
VSTART - Start of ver range to check stability
VSTOP - End Of " " 1] " 1"t

SUBROUTINE DFAUL(HSTART, VSTART, VSTOP)

DOUBLE PRECISION HSTART, VSTART, VSTOP

HSTART = 0.DO
VSTART = 1.DO
VSTOP = -1.DO
RETURN

END

DFAUL
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Fedededcleldeickdvioeleldvieioficiohivioidvioiioiododeioiioioicletoiloiiiolodolololedoiof eioietoedoteiokd
ke Fie
dok ok
e GTEND : wk
wk ke
e ok
Frdviededeledeiededoiedefedeinbdoiivioiiviioioiodeioieiodoiokiioiioioioieiolloioiolododeloi ol hoedoiedoteds
wk
wok
% Returns the horizontal stop value for the default
ke region, given the vertical coordinate.
Feke

DOUBLE PRECISION FUNCTION GTEND(VERT)
wk
ke

DOUBLE PRECISION VERT
Fe

GTEND = 1.D0 - VERT + 1.D-12

RETURN

END
Fk
Fke
Foke

GTEND
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GTMAT

Fdeivleiieieieieicdivkiciivivioiicioloivioloioliciotioiiciotoidrloloiodeloieideieloldedotoiedetoledetotededs
*% dok
% dok
*¥% GTMAT Fee
wk Fok
% . %
Fdddrioivivioioiciidofeidviviolivivioiivioiivioiicloirivinioioiloloidoloioloieio ol oleeloledefoiekode
]
wdk
*% Generates the set of extreme matrices
wk
% INPUTS: Al,A2 - Coordinates of point for which set
¥k is generated
% GAIN - Upper gain of quantizer nonlinearity
#% GAINL - Lower gain of overflow nonlinearity
wk RHO = All of the extreme matrices will
wk be multiplied by this value to get
Fdk the asymptotic stability of the
Hd system.
%
i OUTPUTS: EMAT - Set of extreme matrices
% NUMEXT - Number of extreme matrices
Fd SFLAG - Always set to 0 since the filter can
¥k realize any parameters.
Fk
ok

SUBROUTINE GTMAT(Al, A2, GAIN, RHO, EMAT, NUMEXT,

& SFLAG, GAINL)

%k
*k

DOUBLE PRECISION Al, A2, GAIN, RHO, EMAT(3,3,4)

DOUBLE PRECISION GAINL

DOUBLE PRECISION SLOPE(4,2), G1, G2, G3, G4

INTEGER NUMEXT, SFLAG, I, J, K
e
*k
ik Clear the flag

SFLAG = 0
ek
% Set the number of extreme matrices

NUMEXT = 4
ke
i

Set up the slope limits on the nonlinearity
DO 105 I = 1,4

- SLOPE(I,1) = GAIN

105 SLOPE(I,2) = GAINL * GAIN

it
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170

*k

e
Kk
Jdede

255

Set up extreme matrices
DO 110 I = 1, NUMEXT

K=1I-1
Gl = SLOPE(1, MOD(K,2) + 1)

G2 = SLOPE(2, MOD(K/2,2) + 1)
EMAT(1,1,I) = G1 * Al
EMAT(1,2,I) = G2 * A2
EMAT(2,1,I) = 1.DO
EMAT(2,2,I) = 0.DO

CONTINUE

DO 170 K = 1, NUMEXT

Do 1703 =1, 2

Do1701r=1, 2

EMAT(I,J,K) = RHO * EMAT(I,J,K)
RETURN

END

GTMAT
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LINIT

Sk ok
L ot
e LINIT e
e *k
ok oo
sedededeiedelodedededodichieiediiedodotetcioiiokdokdoiiefokdodoiofdeiehdiodiolrioiiioideioiioioicdodote e

Sets up initialization for the boundary search
program.

INPUTS: LU - Logical unit number of output file
PARMS - Parameters passed in by run string
PARMS(1)~ type of quantizer
0 truncation
1 roundoff
PARMS(2)~ type of overflow
0 none, zeroing, satur
1 triangular
2 two's complement
PARMS(3)~- type of boundary
0 stability
1 eigenvalues < 1

TiFEiEEREIEEEIFEGEGSFS

OUTPUTS: IINIT - Initial inside search point
ode OINIT - Initial outside search point

a2,

ek SAXIS - Initial search axis
ke
]
SUBROUTINE LINIT(LU, PARMS, IINIT, OINIT, SAXIS)
%k
ke
INTEGER LU, PARMS(4), SAXIS, I
DOUBLE PRECISION IINIT(2), OINIT(2)
#%k
et
W Print description
WRITE(LU, 5) (PARMS(I), I=1,4)
dete
Rt Print data range (depending on quantizer)
IF (PARMS(1).EQ.0) WRITE(LU, 10) 0.0, 1.0, =1., 1.
IF (PARMS(1).EQ.1) WRITE(LU, 10) 0.0, .5, -.5, .5
ek
* Print symmetry ( 1 = symmetric about y axis)
WRITE(LU, 15) 1
i
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it %

== N
"o

%k
ke
ek
%%

%k

257

Set initial search points and search axis

IINIT(1) = 0.00DO
OINIT(1) = 1.50D0
IINIT(2) = 0.00DO
OINIT(2) = IINIT(2)
SAXIS = 2

RETURN

FORMAT( 'DIRECT FORM, TWO QUANTIZERS ',4I5)
FORMAT (4F10.4)

FORMAT(I2)

END

LINIT

www.manharaa.com



258

Fededeicdeiededededodeiviniiololrieioiiviohdokdotoieloioleleideioiololokdoloiooloiodokdciokdoiolriedeie otk

Tifid

DNCHK

Piisg

Feddeirkdivivhleiideledoloivlohdiohivioiohkiclololoiviokdotedededototoioioleiioloidedefotedeiedotodolotke

R SR SRS S S

dk
dede

ii

Checks if we are done with border searching
program. Since these plots are all symmetric
about Y axis, we are done when X < 0.

INPUTS: X, Y =~ Coordinates of point
OUTPUT: DNCHK - '0' if not done

'2' if done
INTEGER FUNCTION DNCHK(X, Y)

DOUBLE PRECISION X, Y

DNCHK = 0

IF (X.LT.-.04D0) DNCHK = 2
RETURN

END

DNCHK
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Coupled form with two quantizers

GETLB
DESCR
DFAUL
GTEND

GTMAT

Directory

Page
261
262
263
264
265
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FIN4,Y,L
%k

%k
************************************************************
************************************************************

%k ke
ok ok
e COUPLED FORM -- TWO QUANTIZERS e
sk L
%k Jeke
%% Sk
*%  THIS FILE CONTAINS THE ROUTINES FOR USING THE e
*%  BRAYTON-TONG ALGORITHM PROGRAMS TO FIND THE Feie
*% STABILITY REGIONS FOR A SECOND ORDER COUPLED FORM ¥k
*% DIGITAL FILTER WITH TWO QUANTIZERS. e
wok *%

********************************************************k***
************************************************************
%t

%

*%  FILE "BRAYJ

ok

wok

Yok

%k
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GETLB

Fedrinleileioiioldvideiioiloiiiolviioiidviioioiioioiodeivioloeioinkdoiokieeiicicloloiooieioidiolol
ok el
ek dode
i GETLB *%
soke ke
Foke wok
Felcleiiedeiciioiichiokivkinviefioiioiodvioiioiioivlolioiiclondoioiniokiokidoioiioiioiioioioldoiok
ok
ke
il Returns the name of this program version
ik
ke

DOUBLE PRECISION FUNCTION GETLB(I)
Foke
e

DOUBLE PRECISION LABEL

DATA LABEL/8HBRAYJ [/
ok

GETLB = LABEL

RETURN

END
woke
o
wok
ok
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wk Fok
wk ok
Fk DESCR Fk
deke ok
woke Fk
Iedeiciiriviivieioiioloieioiololeloiolnivloloioeiodoioedhideiioloioiodoloiriloloioleeiloici ok kdsisiik
% :
e Prints any additional description of program version
wk
wk INPUT: LU - Device number of printer
wok
SUBROUTINE DESCR(LU)

*k
Fi

WRITE(LU, 1)

RETURN
%
1 FORMAT(' GOLD-RADER COUPLED FORM FILTER WITH TWO',

& ' QUANTIZERS.')

END
Wk
%k

DESCR
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dedvdedededeieideiclolofelelededeleivhiciicteiooioidoioleleloivieiioiioinidelokdoltoiololeinledeteteelofdok

Tiiig

%k
%k

woke

i

Supplies the default values for the first quadrant

of the unit circle.

OUTPUT: HSTART - Start of hor range to check stability
VSTART - Start of ver range to che

VSTOP - End of " " "

SUBROUTINE DFAUL(HSTART, VSTART, VSTOP)

DOUBLE PRECISION HSTART, VSTART, VSTOP

HSTART = 0.DO
VSTART = 1.D0
VSTOP = 0.DO
RETURN

END

ck stability
"

DFAUL
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M*mmmmmmm*mmmm**mm

sk Hk
dok dok
e GTEND *k
wk ok
ok Fok
Feddriciriekdeloiciioideinriehiriciniciclicidoioldoiceioiiieloicioieivioiovioloiofoidoiioi doieloleolo
%k
wk
e Returns the horizontal stop value for the default
ke region, given the vertical coordinate.
Fk

DOUBLE PRECISION FUNCTION GTEND(VERT)
sk
Fk

DOUBLE PRECISION VERT
Feke

GTEND = DSQRT(1.DO - VERT*VERT) + 1.D-12

RETURN

END
Fie
woke
%

GTEND
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GTMAT
Iekidedeioicivicioioieioioivioidciodeieicioleiniioiidvioieieiolioliolvioiioidoicisioidelefokdetokdeioioioiok
Fode wok
ke wok
ek GTMAT i
¥k
*k woke
Fedeldcleloiciickioideioiioioiioidcloieiioiioioivioidoiioidoickideiokicicdeieiololoioilelioiviciciok
o
doke
ok Generates the set of extreme matrices
Fode
ke INPUTS: Al1,A2 - Coordinates of point for which set
R is generated
ik GAIN - Upper gain of quantizer nonlinearity
Wk GAINL - Lower gain of overflow nonlinearity
Wi RHO - Value which will multiply all of the
o extreme matrices to get a measure
ke of the asymptotic stability of the
i system.
e
% OUTPUTS: EMAT - Set of extreme matrices
*% NUMEXT - Number of extreme matrices
ik SFLAG -~ Always set to 0 since filter can
o realize any conjugate poles.
e
e
Fk
SUBROUTINE GTMAT(Al, A2, GAIN, RHO, EMAT, NUMEXT,
& SFLAG, GAINL)
L
i
DOUBLE PRECISION Al, A2, GAIN, RHO, EMAT(3,3,16)
DOUBLE PRECISION GAINL
DOUBLE PRECISION SLOPE(4,2), Gl, G2, G3, G4
INTEGER NUMEXT, SFLAG, I, J, K
ok
%k
ke
ke Clear flag
SFLAG = 0
woke
i Set the number of extreme matrices
NUMEXT = 4
Foke
Foke

Set up the slope limits on the nonlinearity
DO 105 I = 1,4

SLOPE(I,1) = GAIN

105 SLOPE(I,2) = GAINL
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GTMAT
ok
ok
Wk Set up extreme matrices
DO 110 I = 1, NUMEXT
ek
*k
K=1I-1
Gl = SLOPE(1, MOD(K,2) + 1)
G2 = SLOPE(2, MOD(K/2,2) + 1)
*k
ik
EMAT(1,1,I) = G1 * Al
EMAT(1,2,I) = -G1 * A2
EMAT(2,1,I) = G2 * A2
EMAT(2,2,I) = G2 * Al
110 CONTINUE
*k
wk
DO 170 K = 1, NUMEXT
DO 170 J = 1, 2
DO 170 I =1, 2
170  EMAT(I,J,K) = RHO * EMAT(I,J,K)
e
wk
RETURN
END

www.manaraa.com




267

4, Coupled form with four quantizers

Directory

Page
GETLB 269
DESCR 270
DFAUL 271
GTEND 272
GTMAT 273
LINIT 275
DNCHK 277
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*Mmmmmmmm*mm

COUPLED FORM =-- FOUR QUANTIZERS

THIS FILE CONTAINS THE ROUTINES FOR USING THE
BRAYTON-TONG ALGORITHM PROGRAMS TO FIND THE
STABILITY REGIONS FOR A SECOND ORDER COUPLED FORM
DIGITAL FILTER WITH FOUR QUANTIZERS.

Piiidgddiid

e FILE "BRAYI
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Firdrdrinioirdniolriinlinkiciiednivielodniolviioodoliciodooioisioiolelooioioiodeloioiedelololeivie ik
¥k Jok
ok wk
ok GETLB e
ok *k
ok wie
Tlrkddrivicideiriiivicirieioleeiioiioicioloioioicinloidoiiooioieieioioioioidoioiolefodeiio ok doieielodelek
ok
ok
i Returns the name of this program version
*%
*k

DOUBLE PRECISION FUNCTION GETLB(I)
ke
ok

DOUBLE PRECISION LABEL

DATA LABEL/S8HBRAYI /
ok

GETLB = LABEL

RETURN

END
e
ok
*k
*k

GETLB
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Fedcdeiirioeicdriivikickiciekiriokiokivioiioidoioieloiioioioiolohiokivioicielolioioheioledolodvioloiviciek
wie ¥k
) %ok
F¥k DESCR Wk
deke wk
dedke ook
Fekdvidricicidekicikdcinriciiioioiioiivioicioicioivivioiioioivioioloioioiciolioiodeieleioi ol delowdoiok
Foie
** .
¥k Prints any additional description of program version
ke
¥k INPUT: LU - Device number of printer
ok

SUBROUTINE DESCR(LU)
%k
Foke

Wk
1

*%k

WRITE(LU, 1)

RETURN

FORMAT(' GOLD-RADER COUPLED FORM FILTER WITH FOUR',
& ' QUANTIZERS.')

END

DESCR
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Fdeiedededeinirieiieddodeivividnicloieleioioldeledviohdoideioieoioinieioiohdoidoicioloieioieiivicioicleiiek

wk Fke
Fk w%
i DFAUL ke
woke wke
L] Wk
Fdeleiedriciiciticilokioidclrivioioleiolicioiciioicioliioivioloirioiniciokdeicioliolciok dokdoiodoieloiick
*ke
]
ke Supplies the default values for the first quadrant
Fde of the unit circle.
#oke
R OUTPUT: HSTART - Start of hor range to check stability
o VSTART - Start of ver range to check stability
dede VSTOP - End Of ”" 1" " " "
%
*k .

SUBROUTINE DFAUL(HSTART, VSTART, VSTOP)
ke
wk

DOUBLE PRECISION HSTART, VSTART, VSTOP
Fie
ke

HSTART = 0.DO

VSTART = 1.DO

VSTOP = 0.DO

RETURN

END
%k
Feke
]

DFAUL
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GTEND

*****************ﬁ******************************************
ek e
*k ke
& GTEND ke
ok Fke
dee e
edeieicieicdivieicieiitieidoioioioioiriolnivioicloiloivioicleidoiioioloicioidoio ool ioiioisiceoioik
wofe
Fke
e Returns the horizontal stop value for the default
wde region, given the vertical coordinate.
e -

DOUBLE PRECISION FUNCTION GTEND(VERT)
e
*

DOUBLE PRECISION VERT
#

GTEND = DSQRT(1.DO - VERT*VERT) + 1.D-12

RETURN

END
e
dede
e
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*m*m*mm*mwﬁmmmmm
%k ke
deke Fig ]
ek GTMAT ke
ok %
ok *k
*mmm**mmmmmmmmmm

EE SRS S S EEEE

1§ $§ 1% ii

115

Generates the set of extreme matrices

INPUTS:

OUTPUTS:

Al,A2
GAIN

GAINL
RHO

EMAT

NUMEXT -

SFLAG

Coordinates of point for which set
is generated

Upper gain of quantizer nonlinearity

Lower gain of overflow nonlinearity

Value which will multiply all of the
extreme matrices to get a measure
of the asymptotic stability of the
system.

Set of extreme matrices
Number of extreme matrices

- Always set to 0 since the filter can

realize any conjugate poles.

SUBROUTINE GTMAT(A1l, A2, GAIN, RHO, EMAT, NUMEXT,

&

SFLAG, GAINL)

DOUBLE PRECISION Al, A2, GAIN, RHO, EMAT(3,3,16)
DOUBLE PRECISION GAINL

DOUBLE PRECISION SLOPE(4,2), Gi, G2, G3, G4
INTEGER NUMEXT, SFLAG, I, J, K

Clear flag
SFLAG = 0

Set the number of extreme matrices

NUMEXT =

16

Set up the slope limits on the nonlinearity
DO 105 I =1,4

SLOPE(I,1) = GAIN

SLOPE(I,2) = GAINL * GAIN

GTMAT
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GTMAT
% Set up extreme matrices
DO 110 I = 1, NUMEXT
wke
K=1I-1 '
Gl = SLOPE(1, MOD(K,2) + 1)
G2 = SLOPE(2, MOD(K/2,2) + 1)
G3 = SLOPE(3, MOD(K/4,2) + 1)
G4 = SLOPE(4, MOD(K/8,2) + 1)
ok
EMAT(1,1,I) = G1 * Al
EMAT(1,2,I) = -G2 * A2
EMAT(2,1,I) = G3 * A2
EMAT(2,2,I) = G4 * Al
110 CONTINUE
dke
Fok
DO 170 K = 1, NUMEXT
DO170J =1, 2
DO170I =1, 2
170  EMAT(I,J,K) = RHO * EMAT(I,J,K)
%
Pk
RETURN
END
F¥k
o
ok

www.manaraa.com

ol LEL ZJI—*I




275

LINIT

!
l

LINIT

Tiiid
R

Fddvivdedriofdeiededivioioiivhiviiciokdeivicidclhdckdoloioiioloidoliviofeiicioiiokdokkdodokdoke ok

Sets up initialization for the boundary search
program.

INPUTS: LU -~ Logical unit number of output file
PARMS - Parameters passed in by run string
PARMS(1)- type of quantizer
0 truncation
1 roundoff
PARMS(2)~- type of overflow
0 none, zeroing, satur
1 triangular
2 two's complement
PARMS(3)- type of boundary
0 stability
1 eigenvalues < 1

OUTPUTS: IINIT - Initial inside search point
OINIT -~ Initial outside search point
SAXIS - Initial search axis

FIYITETEIEIEIFSIEIILILIESISELSE

SUBROUTINE LINIT(LU, PARMS, IINIT, OINIT, SAXIS)
INTEGER LU, PARMS(4), SAXIS, I
DOUBLE PRECISION IINIT(2), OINIT(2)

Print description
WRITE(LU, 5) (PARMS(I), I=1,4)

I3 fii

Print data range (depending on quantizer)
IF (PARMS(1).EQ.0) WRITE(LU, 10) 0.0, 1.0, 0., 1.
IF (PARMS(1).EQ.1) WRITE(LU, 10) 0.0, 0.5, 0., 0.5

Print symmetry ( 3 = symmetric about both axes)
WRITE(LU, 15) 3

11 %%

Set initial search points and search axis
IINIT(1) = 0.00D0
OINIT(1) = IINIT(1)
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LINIT
IINIT(2) = 0.00DO
OINIT(2) = 1.25D0
SAXIS = 1
ok
RETURN
E
%k

5 FORMAT( 'COUPLED FORM, FOUR QUANTIZERS ',4I5)
10 FORMAT (4F10.4)
15 FORMAT(1I2)

END

SN ZJI_F.LI
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DNCHK

Fiededeiieiekioideledvioieioicdeioivieioideioicloioiivloivioleiok ool ioioleloioloidoiolicioloiioloioiede
wok Fode
ok dede
ke DNCHK ik
doke i
% ok
Fidrdvioiriieieileiviohivicoioeivioloivivkiodcoldokidoivioiielotdeiloinidoidedeleloloiiotoidok
Fok
Foke
dk
i Checks if we are done with border searching
' program. We are done if Y < 0,
Hok
Hke
ke
ok INPUTS: X, Y - Coordinates of point
Fok
ok OUTPUT: DNCHK - '0' if not done
deke '2' if done
ek
ok

INTEGER FUNCTION DNCHK(X, Y)
*ohe
Hok

DOUBLE PRECISION X, Y
Fk
Fok

DNCHK = 0

IF (Y.LT.-.04D0) DNCHK = 2

RETURN

END
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5. Wave filter with two quantizers

Directory

Page
GETLB 280
DESCR 281
DFAUL 282
GTEND 283
GTMAT 284
LINIT 286
DNCHK 288
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<
[~}

3 %

|
%

WAVE FILTER -- TWO QUANTIZERS

THIS FILE CONTAINS THE ROUTINES FOR USING THE
BRAYTON-TONG ALGORITHM PROGRAMS TO FIND THE
STABILITY REGIONS FOR A SECOND ORDER WAVE DIGITAL
FILTER WITH TWO QUANTIZERS.

11353344934
R R

|
|

FILE “BRAYQ

iiiii34d
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GETLB

Ficieioleiciivivicleivdoivieiivioicioioiioileiviiniivinieloicioieioitiokioloidoic i loloicloielokdeloiciel
ke *h
ok *ok
ke GETLB i
] ik
Fok Fke
Fekdviiciviciedeiceleiokidvioidoieiciotoiciciioioiivicioioiioicinleloicioideiokdoiicioiodeleloioielok okl
wok
Fok
b Returns the name of this program version
Fek
** .

DOUBLE PRECISION FUNCTION GETLB(I)
Fok
Fke

DOUBLE PRECISION LABEL

DATA LABEL/8HBRAYQ /
Fk

GETLB = LABEL

RETURN

END
wee
Feie
Fede
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!
i
i

*k L
Fe dode
F% DESCR ok
dk deke
Wk s
dededeiededeiofloiodivkiohiciciclivlohioiokioioiokdivivichdololoikdciideleloidoioioideloloilololoioiedk
ek
ke Prints any additional description of program version
wk
wi INPUT: LU - Device number of printer
%
SUBROUTINE DESCR(LU)

ke
ok

WRITE(LU, 1)

RETURN
xk
1 FORMAT(' WAVE DIGITAL FILTER WITH TWO',

& ' QUANTIZERS.')

END
Fok
Wk
ede

DESCR
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Feddedriekieiideiefleideieinivioeioriioioiinivleioiieicoledieiok ok doloioioleloidoicieiolotnidoion
Fk dede
Fk e
Wk DFAUL ok
Fk *k
Fk Aot
Feddeddedeieideiedckdvhioiiniciiovicieicloleeleiedoioiioidoieeioioiioidoloidoioieloeiolvioiodoloiokk
wok
wok
Fk Supplies the default values for the region in the
b parameter plane.
Foke
¥ OUTPUT: HSTART - Start of hor range to check stability
i VSTART - Start of ver range to check stability
soe VSTOP - End Of 11 " 11] " "
ke
ek :

SUBROUTINE DFAUL(HSTART, VSTART, VSTOP)
Fek
]

DOUBLE PRECISION HSTART, VSTART, VSTOP
wk
Fk

HSTART = 0.DO

VSTART = 10.DO

VSTOP = 0.D0

RETURN

END
wk
L)
Wk

DFAUL
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Fdriidedcloiioivicivlclricivioicioleloideiciviioiiioichodvioioieiodoi doicdoivieedoiiodoidet dedolokedelodoiede
ke . ok
e Fok
ok GTEND i
¥k woke
*k dede
Ficdeicivivicinivivivioleioiodcinieiviviidieioiioinioloiodoioidokicioiioioideioioisiokiclolededotekdelolofelolole
ke
doi
Wk Returns the horizontal stop value for the default
ke region, given the vertical coordinate.
Hik

DOUBLE PRECISION FUNCTION GTEND(VERT)
)
doke

DOUBLE PRECISION VERT
s

GTEND =10.D0 + 1.D-12

RETURN

END
e
Fie

GTEND
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GTMAT
Feledriicdeivicivieiohioiieioioiviviivioleioicieioieioidedeieloioiodokdeiicioieidclokiviokdelokdeioleiok ok
ek Wk
Jee sk
i GTMAT ke
% wk
*k wk
Fededeiedededviciiciieioiieielnivioilviicieioeiololrioioieioiiniidoiioiiokdoiokdoioidokdeloioliek
]
Yok
Wk Generates the set of extreme matrices
doke
*k INPUTS: Al1,A2 - Coordinates of point for which set
*k is generated
Wk GAIN - Upper gain of quantizer nonlinearity
*% GAINL - Lower gain of overflow nonlinearity
ol RHO = Value which will multiply all of the
i extreme matrices to get a measure
wdk of the asymptotic stability of the
il system. ‘
ke
*% OUTPUTS: EMAT - Set of extreme matrices
¥k NUMEXT - Number of extreme matrices
¥ SFLAG - Always set to O since filter can
*% realize any parameters.
doke
wok
SUBROUTINE GTMAT(A1l, A2, GAIN, RHO, EMAT, NUMEXT,
& SFLAG, GAINL)
o
*%
DOUBLE PRECISION Al, A2, GAIN, RHO, EMAT(3,3,16)
DOUBLE PRECISION E, G, H
DOUBLE PRECISION GAINL
DOUBLE PRECISION SLOPE(4,2), G1, G2, G3, G4
INTEGER NUMEXT, SFLAG, I, J, K
ke
*k
wok
wk Clear flag
SFLAG = 0
#ie
*¥%
E = (-2.D0*A1) / (1.D0 + 2.D0*Al)
G = -1.D0 / (1.DO + Al + A2 + 2.D0*A1*A2)
H=G* (1.D0 + Al)
woie
ok Set the number of extreme matrices

NUMEXT = 4
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GTMAT
deke
w% Set up the slope limits on the nonlinearity
DO 105 I = 1,4
SLOPE(I,1) = GAIN
105 SLOPE(I,2) = GAINL
ek
Fke
R Set up extreme matrices
, DO 110 I = 1, NUMEXT
Feke
K=1I-1
Gl = SLOPE(1, MOD(K,2) + 1)
G2 = SLOPE(2, MOD(K/2,2) + 1)
Fok
EMAT(1,1,I) = Gl * (-E*G ~ 2.DO*E - 1.DO)
EMAT(1,2,I) = GlL * G
EMAT(2,1,I) = G2 * (-E*G - 2.DO*E - E*H)
EMAT(2,2,I) = G2 * (G + H + 1.D0)
110 CONTINUE
deie
wie
DO 170 K = 1, NUMEXT
DO1703=1, 2
DO170 I =1, 2
170 EMAT(1,J,K) = RHO * EMAT(I,J,K)
Fede
dek
200 RETURN
END
sk
Fok
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LINIT

Sets up initialization for the boundary search
program.

CAUTION : USE BOUNDARY SEARCH PROGRAM FOR ROUNDOFF
QUANTIZERS ONLY ! ! !

INPUTS: LU - Logical unit number of output file
PARMS - Parameters passed in by run string
PARMS(1)~- type of quantizer
0 truncation
1 roundoff
PARMS(2)- type of overflow
0 none, zeroing, satur
1 triangular
2 two's complement
PARMS(3)~- type of boundary
0 stability
1 eigenvalues <1

OUTPUTS: IINIT - Initial inside search point

OINIT - Initial outside search point
SAXIS -~ Initial search axis

SUBROUTINE LINIT(LU, PARMS, IINIT, OINIT, SAXIS)

INTEGER LU, PARMS(4), SAXIS, I
DOUBLE PRECISION IINIT(2), OINIT(2)

Print description
WRITE(LU, 5) (PARMS(I), I=1,4)

Print data range (depending on quantizer)
WRITE(LU, 10) 0.0, 3.0, 0.0, 3.

Print symmetry ( O = none)
WRITE(LU, 15) 0
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LINIT

1%

Set initial search points and search axis
TINIT(1) = 1.00D0

OINIT(1) = IINIT(1)

IINIT(2) = 0.30D0

OINIT(2) = 0.00DO

SAXIS = 3

RETURN

It %

FORMAT('WAVE FILTER, TWO QUANTIZERS ',4I5)
FORMAT(4F10.4)

FORMAT(I2)

END

= = 0
o

ok
ke
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DNCHK

i
i

DNCHK

Tigid
Tizig

§
|
;
|
%

Checks if we are done with border searching
program. We will assume we are done if we
are reasonably close to right edge. For
two's complement, let border-searching
program get back to first boundary point.

INPUTS: X, Y - Coordinates of point
OUTPUT: DNCHK - '0' if not done
'2' if done

INTEGER FUNCTION DNCHK(X, Y)

DOUBLE PRECISION X, Y

33 ¥¥ fi¥iriiiiiig

DNCHK = 0

IF ((Y.LT.0.D0O).AND.(X.GT.2.D0)) DNCHK = 2
RETURN

END
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6. Wave filter with three quantizers

Directory
Page
GETLB 291
DESCR 292
DFAUL 293
GTEND 294
GTMAT 295
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ok

e Erd
ok WAVE FILTER -- THREE QUANTIZERS e
%% %
ek *%
dk %
*%  THIS FILE CONTAINS THE ROUTINES FOR USING THE s
% BRAYTON-TONG ALGORITHM PROGRAMS TO FIND THE ok
** STABILITY REGIONS FOR A SECOND ORDER WAVE DIGITAL ks
#% FILTER WITH THREE QUANTIZERS. e
ke b g

sefeedededdedntdnbieldeirbdedede il b fededrdninblnle b drde b dnle e e doe oo dete e e e e
Fedodededviciededeledodcivioidolekdoickivloieiioiviolelokiviokiedoioiioidviolobfoiiokioiiolddokkekiohd

FILE "BRAYR

Ti3i§¥%%3
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GETLB

Fedricdeledeleioicieioidefoiivioiioidioidoicoioleioloiokioioiiciolofokedrioidoicieloioiociei ol dotcioich
ek wk
wk *%
Fk GETLB W
Feke dok
Foek ke
Felededeieiedeividelodeleiciiioirioiidcclrichiciniciloiioideioidekdeloloiodooleloleieloiioiodekdeioedoidol
Fok
dek
Fk Returns the name of this program version
Fok
Fok

DOUBLE PRECISION FUNCTION GETLB(I)
e
*%

DOUBLE PRECISION LABEL

DATA LABEL/8HBRAYR /
deke

GETLB = LABEL

RETURN

END
Fok
ok
Hok

www.manaraa.com




292

i

ok Fede
wk ek
% DESCR we
Foke Fk
Fke ok
Fedriekdeiedeicioeioioolviekicicolviviviiiolivickdeioloioidoiedooiodoloieidoleiok doioioioiolodeelededod
woke
** .
% Prints any additional description of program version
Fok
*% INPUT: LU - Device number of printer
wok

SUBROUTINE DESCR(LU)
Fok
Fk

WRITE(LU, 1)

RETURN
Fie
1 FORMAT(' WAVE DIGITAL FILTER WITH THREE',

& ! QUANTIZERS.')

END
*¥%
Foke

DESCR
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Fiekdeideiniceiviniinieviciiciinkdoviodoliineivioiicoidoideiciokiolelidoiioeilrioiiiloiiole o
e ok
wk ke
* DFAUL ke
ke Sk
e *k
Fidcieideivicrieiriieiicioiicleiieleicicioivikdoiohiieloloivioiiooioieioloicioioioiciololiiooel ok dok
ke
wode
e Supplies the default values for the region in the
Fie parameter plane.
Fke
i OUTPUT: HSTART - Start of hor range to check stability
ke VSTART - Start of ver range to check stability
S VSTOP - End of " " " " "
ke
Fke

SUBROUTINE DFAUL(HSTART, VSTART, VSTOP)
Fde
e

DOUBLE PRECISION HSTART, VSTART, VSTOP
ke
dke

HSTART = 0.D0

VSTART = 10.D0

VSTOP = 0.D0

RETURN

END
ok
ke

DFAUL
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fedeiviviciviekdclededoleiolidcieoicinieleieivieioiloirieledoicloiokdondeledfoleidoioicioioledokdoiokdoieloloiek

wde ke
ok Fede
ki GTEND *%
woe Fk
e Fke
Fekdedcicicicivieiiviviiciclioldoivieiviivinioiloiiniehioldeiokiceiioioicioiotoeloiodciok doiieloioioick
wke
ok
i Returns the horizontal stop value for the default
i region, given the vertical coordinate.
ol

DOUBLE PRECISION FUNCTION GTEND(VERT)
Fode
ke

DOUBLE PRECISION VERT
W

GTEND =10.D0 + 1.D-12

RETURN

END
wke
dee

GTEND
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%k

i3

295

GTMAT

Generates the sat of extreme matrices

INPUTS: Al1,A2 - Coordinates of point for which set
is generated

GAIN - Upper gain of quantizer nonlinearity
GAINL - Lower gain of overflow nonlinearity
RHO - Value which will multiply all of the

extreme matrices to get a measure
of the asymptotic stability of the
system.

OUTPUTS: EMAT - Set of extreme matrices
NUMEXT - Number of extreme matrices
SFLAG - Always set to 0 since filter can
realize any parameters.

SUBROUTINE GTMAT(Al, A2, GAIN, RHO, EMAT, NUMEXT,
& SFLAG, GAINL)

DOUBLE PRECISION Al, A2, GAIN, RHO, EMAT(3,3,16)
DOUBLE PRECISION GAINL

DOUBLE PRECISION SLOPE(8,2), G1, G2, G3, G4, G5, X(3)
DOUBLE PRECISION E, G, H

INTEGER NUMEXT, SFLAG, I, J, K

Clear flag
SFLAG = Q

(~2.D0%A1) / (1.DO + 2.D0*A1)
-1.D0 / (1.D0 + Al + A2 + 2.DO*A1%A2)
G * (1.D0 + Al)

T Qm
nmauan

Set the number of extreme matrices
NUMEXT = 16
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105

110
ok

i1
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Set up the slope limits on the nonlinearities
DO 105 I =1,3

SLOPE(I,1) = GAIN

SLOPE(I,2) = GAINL

5
GAIN*GAIN
GAINL*GAINL

DO 110 I = 4,

SLOPE(I,1) =

SLOPE(I,2) =

Initialize for finding min and max values for
slopes 6 - 8

SLOPE(1,1)

SLOPE(2,1)

SLOPE(3,1)

SLOPE(4,1)

SLOPE(5,1)

X(1) = -1.D0 - 2.DO*E*G1 - E*G*G4

X(2) = -2.DO*E*Gl - E*G*G4 - E*H*G5

X(3) = 1.D0 + G*G2 + H*G3

SLOPE(6,1) = X(1)

SLOPE(6,2) = X(1)

SLOPE(7,1) = X(2)

SLOPE(7,2) = X(2)

SLOPE(8,1) = X(3)

SLOPE(8,2) = X(3)

Gl
G2
G3
G4
G5

Find min and max values for slopes 6 - 8
DO 120 I = 1, 32
=I-~-1

G1
G2
G3
G4
G5

SLOPE(1, MOD(K,2) + 1)

SLOPE(2, MOD(K/2,2) + 1)
SLOPE(3, MOD(K/4,2) + 1)
SLOPE(4, MOD(K/8,2) + 1)
SLOPE(5, MOD(K/16,2) + 1)

X(1)
X(2)
X(3)

~1.D0 - 2.DO*E*G1 - E*G*G4
~2.DO*E*G1l - E*G*G4 - E*H*G5
1.D0 + G*G2 + H*G3

DMAX1(SLOPE(6,1), X(1))
DMIN1(SLOPE(6,2), X(1))
SLOPE(7,1) = DMAX1(SLOPE(7,1), X(2))
SLOPE(7,2) = DMIN1(SLOPE(7,2), X(2))
SLOPE(8,1) = DMAX1(SLOPE(8,1), X(3))
SLOPE(8,2) = DMIN1(SLOPE(8,2), X(3))

SLOPE(6,1)
SLOPE(6,2)

nauu

GTMAT
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*ke
200

297

WRITE(6,4) X(3), SLOPE(8,1), SLOPE(8,2)
FORMAT(1X,3F12.5)

CONTINUE

Set up extreme matrices
DO 130 I = 1, NUMEXT

K=1I-1

Gl = SLOPE(6, MOD(K,2) + 1)
G2 = SLOPE(2, MOD(K/2,2) + 1)
G3 = SLOPE(7, MOD(K/4,2) + 1)
G4 = SLOPE(8, MOD(K/8,2) + 1)

EMAT(1,1,I

) G1
EMAT(1,2,I)
)

G2*G
G3
G4

EMAT(2,1,I
EMAT(2,2,I
CONTINUE

DO 170 K
D0 1703 =1, 2
DO 170 1 =1, 2
EMAT(I,J,K) = RHO * EMAT(I,J,K)

1, NUMEXT

RETURN
END

GTMAT
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7. Lattice filter with two quantizers

Directory

Page
GETLB 300
DESCR 301
DFAUL 302
GTEND 303
GTMAT 304
LINIT 306
DNCHK 308
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FIN4,Y,L

dede

%
dedededeledeieicfoioiododededododdoleedeiededoihdviciicdnioiivioidckdefeiofokdoiolieioioloiokdcioi i dedeicie
dededededededelhdedeicdriododedrfedeidotoloiolcdoioiioioiivivivivicioloidelodoiedododieicedeiokdek dodeickde
Joke weke
Jok ek
e LATTICE FILTER -- TWO QUANTIZERS (AT STATES) #*
Jode %k
Lo sk
Joke *¥
*#%  THIS FILE CONTAINS THE ROUTINES FOR USING THE ¥k
*% BRAYTON-TONG ALGORITHM PROGRAMS TO FIND THE e
*% STABILITY REGIONS FOR A SECOND ORDER LATTICE e
% DIGITAL FILTER WITH TWO QUANTIZERS AT STATES. e
%% weke

Fededededeieledodeiielededelededviviciicloloidoiolokdoiokdoiohicionieleiloleiolodoldoiohioiieiokdoieieieiok
sededededeiededeedeivioideiededcieivioiodeioioidolvicioivionininivloinidoloieoiclolok doteiedoloiedoioleledold

FILE "BRAYO

R I S
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*k e
wk woke
Wk GETLB ok
Fk : ok
*% e
Fedeivdeivivieicioioiivickinivioioiiviolioiieioiolodolvioiiooieioiionivioldeiicloicoloideioldok dokodoiok
sk
*k
** Returns the name of this program version
Fede
Hke

DOUBLE PRECISION FUNCTION GETLB(I)
Fk
deke

DOUBLE PRECISION LABEL

DATA LABEL/8HBRAYO /
Fok

GETLB = LABEL

RETURN

END
Fok
Foke
e
Fok

GETLB
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i
J

wk ok
*k %k
Fk DESCR Fi
wk sk
% dke
Feddricieleieiokioiokiviicileioiloioicioininiorivioicioideioiiviiviiciofoloioiioiofdeioiioicloioiolriviok
*k
Fk
i Prints any additional description of program version
ok
Fk INPUT: LU - Device number of printer
Fke
SUBROUTINE DESCR(LU)
Fk
Fk
WRITE(LU, 1)
RETURN
]
1 FORMAT(' GRAY-MARKEL LATTICE FORM FILTER WITH TWO',
& ' QUANTIZERS.',/,
& ' QUANTIZATION APPLIED AT STATES')
END
]
ok
Fk

DESCR
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m*mmmmmmmmmm*m

Foie e
Fke *k
ke DFAUL ¥k
dok wok
Fok wk
Feddckdrickiriioiinoiiekiviiiceicioloiloiiodviioiioioidoiicoiolodeiiinioideidoiicioicloioioisioioids
Yok
ke
i Supplies the default values for the square in the
ek parameter plane.
Fode
ek OUTPUT: HSTART - Start of hor range to check stability
bl VSTART - Start of ver range to check stability
e VSTOP - End Of n " " " "
ke
ke

SUBROUTINE DFAUL(HSTART, VSTART, VSTOP)
e
ok

DOUBLE PRECISION HSTART, VSTART, VSTOP
ek
Foke

HSTART = 0.D0

VSTART = 1.D0

VSTOP = -1.D0

RETURN

END
e
dk
Yok

DFAUL
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GTEND

dededededededoiodedvielivdoickioidedeletoioiiciohiviokkiciiicioiiiofdeivioichiciledeiedofeledodcfoioioied
oo

Joke

Fie GTEND
Jodke

Jeke
Fedededndededrdedededededeiiodedrdedfedeiofelododriododededededdeiodoiededoddoioiohdedoioioieoloicledodoetedokede
ok

ok

R

ke Returns the horizontal stop value for the default
wdke region, given the vertical coordinate.
ok

DOUBLE PRECISION FUNCTION GTEND(VERT)

%
%k
DOUBLE PRECISION VERT
ek
GTEND = 1.D0 + 1.D-12
RETURN
END
*ok
%k
ek
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GTMAT
Fedededededetededcicioioiddoiohioiioiohdciivioieioiiviolelododoeddcioldoioiolodofoiehdeloidoicicivieokledek
¥k sk
Sk ke
e GTMAT e
ok sk
e Foe
dededededededeividnicideivicioirioiletedoiedelededeioieloiohdolofoideiicioiohkieloliiciokfeldoiok ook ik

Generates the set of extreme matrices

INPUTS: B1,B2 - Coordinates of point for which set
is generated
GAIN - Upper gain of quantizer nonlinearity
GAINL - Lower gain of overflow nonlinearity

RHO - Value which will multiply all of the
extreme matrices to get a measure
of the asymptotic stability of the
system.

OUTPUTS: EMAT ~ Set of extreme matrices
NUMEXT - Number of extreme matrices
SFLAG - Always set to O since the filter can

realize any parameters

TEFITTEEEEEEEEEEERGES

SUBROUTINE GTMAT(B1, B2, GAIN, RHO, EMAT, NUMEXT,

& SFLAG, GAINL)
Joe
dede
DOUBLE PRECISION B1l, B2, GAIN, RHO, EMAT(3,3,16)
DOUBLE PRECISION GAINL
DOUBLE PRECISION SLOPE(4,2), Gl1, G2, G3, G4
INTEGER NUMEXT, SFLAG, I, J, K
. ;
s
Foke Clear the flag
SFLAG = 0
** .
Wk Set the number of extreme matrices
NUMEXT = 4
sk

wk Set up the slope limits on the nonlinearity
DO 105 I = 1,4

SLOPE(I,1) = GAIN
105 SLOPE(I,2) = GAINL
ke
dole
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Set up extreme matrices
DO 110 I = 1, NUMEXT

K=1-1
Gl = SLOPE(1, MOD(K,2) + 1)

G2 = SLOPE(2, MOD(K/2,2) + 1)
EMAT(1,1,I) = =G1 * Bl
EMAT(1,2,I) = -G1 * B2
EMAT(2,1,I) = G2 * (1.DO - B1*B1)
EMAT(2,2,I) = -G2 * Bl * B2
CONTINUE

DO 170 K = 1, NUMEXT

DO 170 J =1, 2

DO 170 I =1, 2

EMAT(I,J,K) = RHO * EMAT(I,J,K)
RETURN

END

GTMAT
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Sets up initialization for the boundary search
program.

INPUTS: LU - Logical unit number of output file
PARMS - Parameters passed in by run string
PARMS(1)- type of quantizer
0 truncation
1 roundoff
PARMS (2)- type of overflow
0 none, zeroing, satur
1 triangular
2 two's complement
PARMS(3)- type of boundary
0 stability
1 eigenvalues < 1

OUTPUTS: IINIT - Initial inside search point
OINIT - Initial outside search point
SAXIS - Initial search axis

SUBROUTINE LINIT(LU, PARMS, IINIT, OINIT, SAXIS)

INTEGER LU, PARMS(4), SAXIS, I
DOUBLE PRECISION IINIT(2), OINIT(2)

Print description v
WRITE(LU, 5) (PARMS(I), I=1,4)

Print data range (depending on quantizer)
IF (PARMS(1).EQ.0) WRITE(LU, 10) 0.0, 1.0, -1., 1.
IF (PARMS(1).EQ.1) WRITE(LU, 10) 0.0, .5, -.5, .5

Print symmetry ( 1 = symmetric about y axis)
WRITE(LU, 15) 1

LINIT
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LINIT
i Set initial search points and search axis
IINIT(1) = 0.00DO
OINIT(1) = IINIT(1)
IINIT(2) = 0.00D0
OINIT(2) = 1.25D0
SAXIS =
Foke
Hk
RETURN
*d
#k
5 FORMAT('LATTICE FILTER, TWO QUANTIZERS ',4I5)
10 FORMAT (4F10.4)
15 FORMAT(I2)
END
e
Fede
Fk
Hk
wok
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DNCHK

g
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1 3% tidfiiifriiii

Checks if we are done with border searching
program. Since these plots are all symmetric
about Y axis, we are done when X < 0,

INPUTS: X, Y - Coordinates of point
OUTPUT: DNCHK - '0' if not done

'2' if done
INTEGER FUNCTION DNCHK(X, Y)

DOUBLE PRECISION X, Y

DNCHK = 0

IF (X.LT.-.04D0) DNCHK = 2
RETURN

END

DNCHK
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8. Lattice filter with three quantizers and no overflow

Directory

Page
GETLB 311
DESCR 312
DFAUL 313
GTEND 314
GTMAT 315
LINIT 317
DNCHK 319

ol L ZJI_E.LI
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5k %
% *%
ke LATTICE FILTER -- THREE QUANTIZERS W
Fie (NO OVERFLOW) ok
%ok Kk
ok ek
Fike ke
*#%  THIS FILE CONTAINS THE ROUTINES FOR USING THE Fee
*% BRAYTON-TONG ALGORITHM PROGRAMS TO FIND THE e
#% STABILITY REGIONS FOR A SECOND ORDER LATTICE ke
*#% DIGITAL FILTER WITH THREE QUANTIZERS AND NO Fe
% OVERFLOW. e
L3 sk
Mwmmmmmmwmmmm
MW*MMMWWMMMMWMM
%

Jeie

#%  FILE &BRAYL

%

i

Sk

ok
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GETLB

iiiiii
Iiiiiz

g

we Returns the name of this pProgram version
*k
*k
DOUBLE PRECISION FUNCTION GETLB(I)
Foke
%k
DOUBLE PRECISION LABEL
DATA LABEL/8HBRAYL /
Foke
GETLB = LABEL
RETURN
END
Fk
%

GETLB
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Feededeiviiviviieiioiridcicioieioiioicivieicicielivioloioiviclodrioidioleoicloivickicleinioiokdoicioicloriok
] wke
wok doke
ok DESCR ke
wok die
wk wk
Irfeirioivideivideivloiioiiciedcivirioioitioiioiioiloiiioicioiiiioioleoiioiiciidoioioleioloidoiioioloick
wk
%
ek Prints any additional description of program version
wie
Fk INPUT: LU - Device number of printer
%k
SUBROUTINE DESCR(LU)

ok
*k

WRITE(LU, 1)

RETURN
Hk
1 FORMAT(' GRAY-MARKEL LATTICE FORM FILTER WITH THREE',

& ' QUANTIZERS.',/,' NO OVERFLOW.')

END
Foke
*k

DESCR
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DFAUL

R

3
i

$f 1§ $i¥iiiiyii

i

Supplies the default values for the square in the

parameter plane.

OUTPUT: HSTART - Start of hor range to check stability
VSTART - Start of ver range to check stab%lity
" " 1}

VSTOP =~ End of " "

SUBROUTINE DFAUL(HSTART, VSTART, VSTOP)

DOUBLE PRECISION HSTART, VSTART, VSTOP

HSTART = 0.DO
VSTART = 1.D0O
VSTOP = -1.DO
RETURN

END

DFAUL
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Returns the horizontal stop value for the default
region, given the vertical coordinate.

DOUBLE PRECISION FUNCTION GTEND(VERT)

DOUBLE PRECISION VERT

GTEND = 1.D0 + 1.D-12
RETURN
END

GTEND
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GTMAT

MW*M**MMHM**WM*MMW

Titig
B

Generates the set of extreme matrices

INPUTS: B1,B2 - Coordinates of point for which set

is generated

GAIN - Upper gain of quantizer nonlinearity

GAINL - Ignored

RHO = Value which will multiply all of the
extreme matrices to get a measure
of the asymptotic stability of the
system.

OUTPUTS: EMAT - Set of extreme matrices
NUMEXT ~ Number of extreme matrices
SFLAG - Always set to 0 since the filter can
realize any parameters

ES SRS S S SRS R EEEEE

SUBROUTINE GTMAT(B1, B2, GAIN, RHO, EMAT, NUMEXT,
& SFLAG, GAINL)

i1

DOUBLE PRECISION B1l, B2, GAIN, RHO, EMAT(3,3,16)
DOUBLE PRECISION GAINL

DOUBLE PRECISION SLOPE(6,2), G1, G2, G3, G4, G5, X
INTEGER NUMEXT, SFLAG, I, J, K

Clear the flag
SFLAG = 0

Set the number of extreme matrices
NUMEXT = 16

i 1§ #1313

Set up the slope limits on the nonlinearities
DO 125 I = 1,2
SLOPE(I,1) = GAIN

125  SLOPE(I,2) = 0.DO
SLOPE(3,1) = GAIN*GAIN
SLOPE(3,2) = 0.D0

GTMAT
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1.D0
1.D0 - B1*B1*GAIN*GAIN

SLOPE(4,1)
SLOPE (4,2)

Set up extreme matrices
DO 130 I = 1, NUMEXT

K=1-1
Gl = SLOPE(1, MOD(K,2) + 1)
G2 = SLOPE(2, MOD(K/2,2) + 1)
G3 = SLOPE(3, MOD(K/4,2) + 1)
G4 = SLOPE(4, MOD(K/8,2) + 1)
EMAT(1,1,I) = -G1 * B1
EMAT(1,2,I) = -G2 * B2
EMAT(2,1,I) = G4

EMAT(2,2,I) = -G3 * Bl * B2
CONTINUE

DO 170 K = 1, NUMEXT

DO 170 J =1, 2

DO170 I =1, 2

EMAT(I,J,K) = RHO * EMAT(I,J,K)
RETURN

END

GTMAT
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LINIT
Fededriehdviciededciolnicidelviciciokdoleietelededeioiciirdokdeloioloidoioiedofoicleloivieloiciohdeioiokdeiokde
sk %
*%k ke
ek LINIT e
*% sk
%k *%

dededcdeledeicloicielokdviieloirivivioieivicieiviclicleicloloiolnielolniviohivicleioloioidokdotekededelelededeiok

Sets up initialization for the boundary search
program.

INPUTS: LU - Logical unit number of output file
PARMS - Parameters passed in by run string
PARMS(1)- type of quantizer
0 truncation
1 roundoff
PARMS(2)- type of overflow
0 none, zeroing, satur
1 triangular
2 two's complement
PARMS(3)- type of boundary
0 stability
1 eigenvalues < 1

OUTPUTS: IINIT -~ Initial inside search point

OINIT - Initial outside search point
SAXIS ~ Initial search axis

SUBROUTINE LINIT(LU, PARMS, IINIT, OINIT, SAXIS)

1 FRiifiiiiiyiiEGiGiiriy

INTEGER LU, PARMS(4), SAXIS, I
DOUBLE PRECISION IINIT(2), OINIT(2)

dede
e
ok Print description
WRITE(LU, 5) (PARMS(I), I=1,4)
Hk
ke Print data range (depending on quantizer)
IF (PARMS(1).EQ.0) WRITE(LU, 10) 0.0, 1.0, -1., 1.
IF (PARMS(1).EQ.1) WRITE(LU, 10) 0.0, .5, -.5, .5
Fk
Fi Print symmetry ( 1 = symmetric about y axis)
WRITE(LU, 15) 1
ok
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Set initial sedrch points and search axis
IINIT(1) = 0.00DO

OINIT(1) = IINIT(1) -
IINIT(2) = 0.00DO

OINIT(2) = 1.25D0

SAXIS =1

RETURN

FORMAT('LATTICE FILTER, THREE QUANTIZERS ',4I5)
FORMAT (4F10.4)

FORMAT(12)

END

LINIT
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Checks if we are done with border searching
program. Since these plots are all symmetric
about Y axis, we are done when X < 0.

INPUTS: X, Y - Coordinates of point
OUTPUT: DNCHK - '0' if not done

'2' if done
INTEGER FUNCTION DNCHK(X, Y)

DOUBLE PRECISION X, Y

DNCHK = 0

IF (X.LT.-.04D0) DNCHK = 2
RETURN

END

DNCHK
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9. Lattice filter with three quantizers and overflow

Directory

Page
GETLB 322
DESCR 323
DFAUL 324
GTEND 325
GTMAT 326
LINLT 329
DNCHK 331
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dete %ok
*% %%
doie LATTICE FILTER -- THREE QUANTIZERS Fie
*de L
ek Yok
Jeke Jok
*%  THIS FILE CONTAINS THE ROUTINES FOR USING THE e
*% BRAYTON-TONG ALGORITHM PROGRAMS TO FIND THE e
*% STABILITY REGIONS FOR A SECOND ORDER LATTICE ¥
*% DIGITAL FILTER WITH THREE QUANTIZERS. e
e L2,

Fededededodeledededdedoidodelvivivieividoiviciedoioddodolofdoiiciodokdelodoloichkdoieledolioiicloioiiviodick
Fededeivieddviicinielvidokiviciicioiitdelnidcioitolokiinioiodioidoiividoioiloiioideiiviviis ik

FILE "BRAYM

Tiffiiie
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dekdvdeicieiofeioiicieioiclioidoiolioiivioidviioiciioiivioliviodedoioicieloieioidelcekiorhiokdck ke
deke *ke
ok ]
Fk GETLB ¥k
wke doe
wde ik
Fdkdeivieidrielrivikdoiokiciiviokivioichivivhdoloioirieloioidelotoiideioioileioiodeioiohdeiioiick
Foke
Foke
W Returns the name of this program version
deke
Foke

DOUBLE PRECISION FUNCTION GETLB(I)
Fke
ke

DOUBLE PRECISION LABEL

DATA LABEL/S8HBRAYM [/
Fode

GETLB = LABEL

RETURN

END
ke
Wk
ok

GETLB
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ddedeieicieicieiniviviolvieleivicioieiviciioioioioieieicieleiviokiciolrioleicioiololoieicioiieleloioiioivioiioiek

wie ke
*de *ke
#k DESCR Fok
dede dede
Fk Foke
Ficdedvieiicliioicieiolsiolieideicieloieioicivieidoiioicliceiooicioiioioiciol ol deioloinieioiioiiociok
F
sk )
wke Prints any additional description of program version
Fede
wke INPUT: LU - Device number of printer
&k
SUBROUTINE DESCR(LU)
e
WRITE(LU, 1)
RETURN
Fede
1 FORMAT(' GRAY-MARKEL LATTICE FORM FILTER WITH THREE' s
& ' QUANTIZERS.',/)
END
Fede
ek

DESCR
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DFAUL
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i
1
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iid

Supplies the default values for the square in the

parameter plane.

QUTPUT: HSTART - Start of hor range to check stability

VSTART - Start of ver range to check stab

VSTOP - End of " " "o

SUBROUTINE DFAUL(HSTART, VSTART, VSTOP)

DOUBLE PRECISION HSTART, VSTART, VSTOP

ility
"

DFAUL
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Felddrioividelelriolriioiviideivickdorieloinioioldoivicinioioioioioeiokieleldoiciceioiioielooloielok de
ke ke
#k *k
Fk GTEND ¥
ok %k
Fk ok
Fleidrieickdvidedeioleioiioriciiedeitioioivicioleioieiceiodeioiioliohoivioiciof ol doliolelo o oiedeletodoke
ol
Fk
Wk Returns the horizontal stop value for the default
Wi region, given the vertical coordinate.
wk

DOUBLE PRECISION FUNCTION GTEND (VERT)
Fde

DOUBLE PRECISION VERT
ek

GTEND = 1.D0 + 1.D~12

RETURN

END
Fe
*ee
ok

GTEND
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Foke *%
il GTMAT ke
vk et
Fk wok
Feddedeiedeivivicioiokiciodiokioiciviclokieioleloidoiodoiodeioiicciokdcioheivioleloidoidekdedofotokdoied
Fok
wk
¥k Generates the set of extreme matrices
ok
*% INPUTS: B1,B2 - Coordinates of point for which set
% is generated
Wk GAIN - Upper gain of quantizer nonlinearity
Fk GAINL - Lower gain of overflow nonlinearity
ek RHO - Value which will multiply all of the
Wk extreme matrices to get a measure
Wk of the asymptotic stability of the
ke system.
wk
Fk OUTPUTS: EMAT - Set of extreme matrices
Foke NUMEXT - Number of extreme matrices
*k SFLAG - Always set to 0 since the filter can
ke realize any parameters
Fk
Wk
SUBROUTINE GTMAT(B1, B2, GAIN, RHO, EMAT, NUMEXT,
& SFLAG, GAINL)
Wk
ok
DOUBLE PRECISION B1, B2, GAIN, RHO, EMAT(3,3,16)
DOUBLE PRECISION GAINL
DOUBLE PRECISION SLOPE(6,2), Gl, G2, G3, G4, GS, X
INTEGER NUMEXT, SFLAG, I, J, K '
Fke
*¥% Clear the flag
SFLAG = 0
Wk
badd Set the number of extreme matrices
NUMEXT = 16
o
W Set up the slope limits on the nonlinearities
e to be used to get min and max values of slope 6
DO 105 I =1,3
SLOPE(I,1) = GAIN
105 SLOPE(I,2) = 0.DO
dede
Sk

GTMAT
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DO 110 I = 4,5
SLOPE(I,1) = 1.D0
SLOPE(I,2) = GAINL

Initialize for finding min and max values for

slope 6
Gl = SLOPE(1,1)
G3 = SLOPE(3,1)
G4 = SLOPE(4,1)
G5 = SLOPE(5,1)
X = G5%( 1.D0 - B1*B1%G1*G3*G4 )
SLOPE(6,1

) =X
SLOPE(6,2) = X

Find min and max values for slope 6
=1’

DO 120 I 16

K=1I-1

Gl = SLOPE(1, MOD(K,2) + 1)

G3 = SLOPE(3, MOD(K/2,2) + 1)

G4 = SLOPE(4, MOD(K/4,2) + 1)

G5 = SLOPE(5, MOD(K/8,2) + 1)

X = G5%( 1.D0 - Bl*B1*G1*G3*G4 )

SLOPE(6,1) = DMAX1(SLOPE(6,1), X)
SLOPE(6,2) = DMIN1(SLOPE(6,2), X)

WRITE(6,4) X, SLOPE(6,1), SLOPE(6,2)
FORMAT (1X,3F12.5)

CONTINUE

. Set up the slope limits on the other nonlinearities

DO 1251 = 1,2
SLOPE(I,1) = GAIN

SLOPE(I,2) = GAINL*GAIN
SLOPE(3,1) = GAIN*GAIN
SLOPE(3,2) = GAIN*GAIN*GAINL

Set up extreme matrices
DO 130 I = 1, NUMEXT

K=I-1
Gl = SLOPE(1, MOD(K,2) + 1)

G2 = SLOPE(2, MOD(K/2,2) + 1)
G3 = SLOPE(3, MOD(K/4,2) + 1)
G6 = SLOPE(6, MOD(K/8,2) + 1)

GTMAT
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EMAT(1,1,I) = -G1 * B1
EMAT(1,2,I) = -G2 * B2
EMAT(2,1,I) = G6
EMAT(2,2,I) = -G3 * Bl * B2
CONTINUE

DO 170 K = 1, NUMEXT

DO 170 J =1, 2

DO170I =1, 2
EMAT(I,J,K) = RHO * EMAT(I,J,K)
RETURN

END

GTMAT
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LINIT

3 i 3
A

K

*WWWMWMWWM*MW

Sets up initialization for the boundary search
program.

INPUTS: LU - Logical unit number of output file
PARMS - Parameters passed in by run string
PARMS(1)- type of quantizer
0 truncation
1 roundoff
PARMS(2)- type of overflow
0 none, zeroing, satur
1 triangular
2 two's complement
PARMS(3)- type of boundary
0 stability
1 eigenvalues < 1

OUTPUTS: IINIT - Initial inside search point

OINIT - Initial outside search point
SAXIS - Initial search axis

SUBROUTINE LINIT(LU, PARMS, IINIT, OINIT, SAXIS)

T ¥rdfriifiiiyriiiriivid

INTEGER LU, PARMS(4), SAXIS, I
DOUBLE PRECISION IINIT(2), OINIT(2)

Print description
WRITE(LU, 5) (PARMS(I), I=1,4)

i1 $i¢4

Print data range (depending on quantizer)
IF (PARMS(1).EQ.0) WRITE(LU, 10) 0.0, 1.0, -1., 1.
IF (PARMS(1).EQ.1) WRITE(LU, 10) 0.0, .5, =-.5, .5

Print symmetry ( 1 = symmetric about y axis)
WRITE(LU, 15) 1

iy §¢

Set initial search points and search axis
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LINIT
IINIT(1) = 0.00DO
OINIT(1) = IINIT(1)
IINIT(2) = 0.00DO
OINIT(2) = 1.25D0
SAXIS = 1
*k
RETURN
%
Wk
5 FORMAT( 'LATTICE FILTER, THREE QUANTIZERS ',415)
10 FORMAT (4F10.4)
15 FORMAT(I2)
END
ik
Sk
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Checks if we are done with border searching
program. Since these plots are all symmetric
about Y axis, we are done when X < 0.

INPUTS: X, Y - Coordinates of point
OUTPUT: DNCHK - '0' if not done
'2' if done

INTEGER FUNCTION DNCHK(X, Y)
DOUBLE PRECISION X, Y

DNCHK = 0

IF (X.LT.-.04D0) DNCHK = 2

RETURN
END

DNCHK
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